Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)
Элементы теории множеств и математической логики
Оперировать на базовом уровне5 понятиями: множество, элемент множества, подмножество, принадлежность;
задавать множества перечислением их элементов;
находить пересечение, объединение, подмножество в простейших ситуациях;
оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;
приводить примеры и контрпримеры для подтвержнения своих высказываний
В повседневной жизни и при изучении других предметов:
-
использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов
Числа
Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;
использовать свойства чисел и правила действий при выполнении вычислений;
использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;
выполнять округление рациональных чисел в соответствии с правилами;
оценивать значение квадратного корня из положительного целого числа;
распознавать рациональные и иррациональные числа;
сравнивать числа.
В повседневной жизни и при изучении других предметов:
оценивать результаты вычислений при решении практических задач;
выполнять сравнение чисел в реальных ситуациях;
составлять числовые выражения при решении практических задач и задач из других учебных предметов
Тождественные преобразования
Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;
выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;
использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;
выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями .
В повседневной жизни и при изучении других предметов:
понимать смысл записи числа в стандартном виде;
оперировать на базовом уровне понятием «стандартная запись числа»
Уравнения и неравенства
-
Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;
-
проверять справедливость числовых равенств и неравенств;
-
решать линейные неравенства и несложные неравенства, сводящиеся к линейным;
-
решать системы несложных линейных уравнений, неравенств;
-
проверять, является ли данное число решением уравнения (неравенства);
-
решать квадратные уравнения по формуле корней квадратного уравнения;
-
изображать решения неравенств и их систем на числовой прямой.
В повседневной жизни и при изучении других предметов:
составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах
Функции
-
находить значение функции по заданному значению аргумента;
-
находить значение аргумента по заданному значению функции в несложных ситуациях;
-
определять положение точки по её координатам, координаты точки по её положению на координатной плоскости;
-
по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;
-
строить график линейной функции;
-
проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);
-
определять приближённые значения координат точки пересечения графиков функций;
-
оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчётом без применения формул.
В повседневной жизни и при изучении других предметов:
использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);
использовать свойства линейной функции и ее график при решении задач из других учебных предметов
Статистика и теория вероятностей поставить после текстовых задач, как с содержании.
-
Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;
-
решать простейшие комбинаторные задачи методом прямого и организованного перебора;
-
представлять данные в виде таблиц, диаграмм, графиков;
-
читать информацию, представленную в виде таблицы, диаграммы, графика;
-
определять основные статистические характеристики числовых наборов;
-
оценивать вероятность события в простейших случаях;
-
иметь представление о роли закона больших чисел в массовых явлениях.
В повседневной жизни и при изучении других предметов:
оценивать количество возможных вариантов методом перебора;
иметь представление о роли практически достоверных и маловероятных событий;
сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;
-
оценивать вероятность реальных событий и явлений в несложных ситуациях
Текстовые задачи
Решать несложные сюжетные задачи разных типов на все арифметические действия;
строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трёх взаимосвязанных величин, с целью поиска решения задачи;
осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
составлять план решения задачи;
выделять этапы решения задачи;
интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
решать задачи на нахождение части числа и числа по его части;
решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;
решать несложные логические задачи методом рассуждений.
В повседневной жизни и при изучении других предметов:
выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку)
Геометрические фигуры
-
Оперировать на базовом уровне понятиями геометрических фигур;
-
извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;
-
применять для решения задач геометрические факты, если условия их применения заданы в явной форме;
-
решать задачи на нахождение геометрических величин по образцам или алгоритмам.
В повседневной жизни и при изучении других предметов:
использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания
Отношения
Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.
В повседневной жизни и при изучении других предметов:
использовать отношения для решения простейших задач, возникающих в реальной жизни
Измерения и вычисления
-
Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
-
применять формулы периметра, площади и объёма, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;
-
применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.
В повседневной жизни и при изучении других предметов:
-
вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни
Геометрические построения
Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.
В повседневной жизни и при изучении других предметов:
выполнять простейшие построения на местности, необходимые в реальной жизни
Геометрические преобразования
-
Строить фигуру, симметричную данной фигуре относительно оси и точки.
В повседневной жизни и при изучении других предметов:
-
распознавать движение объектов в окружающем мире;
-
распознавать симметричные фигуры в окружающем мире
Векторы и координаты на плоскости
-
Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число, координаты на плоскости;
-
определять приближённо координаты точки по её изображению на координатной плоскости.
В повседневной жизни и при изучении других предметов:
-
использовать векторы для решения простейших задач на определение скорости относительного движения
История математики
Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
понимать роль математики в развитии России
Методы математики
Выбирать подходящий изученный метод для решении изученных типов математических задач;
Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.
|