Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических




Скачать 1.17 Mb.
Название Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических
страница 7/8
Тип Документы
rykovodstvo.ru > Руководство ремонт > Документы
1   2   3   4   5   6   7   8

4. Безопасность и экологичность решений проекта
4.1 Охрана труда. Меры безопасности при проведении контроля автосцепного устройства
В настоящем дипломном проекте разрабатываются мероприятия по охране труда на контрольном пункте по ремонту автосцепного оборудования.

Ремонт узлов и деталей автосцепного устройства выполняется в соответствии с требованиями ГОСТ 12.2.061-81 ССБТ «Оборудование производственное. Общие требования безопасности к рабочим местам».

Организация ремонта КПА предусматривает применение оборудования и приспособлений, исключающих возникновение производственного травматизма и профессиональных заболеваний, облегчающих труд рабочих, а также выполнение требований ГОСТ 12.2.003-91 ССБТ «Оборудование производственное. Общие требования безопасности». Оборудование, применяемое при ремонте автосцепного устройства, расставлено в соответствии с технологическим процессом. Проходы между стендами и станками, предназначенные для передвижения рабочих и внутрицехового транспорта, соответствует нормам проектирования механических и сборочных цехов.

При контроле автосцепного устройства применяется магнитопоршковый метод контроля.

Магнитопорошковый метод неразрушающего контроля основан на явлении притяжения частиц магнитного порошка магнитными потоками рассеяния, возникающими над дефектами в намагниченных объектах контроля.

Наличие и протяженность индикаторных рисунков, вызнанных полями рассеяния дефектов, можно регистрировать визуально или автоматическими устройствами обработки изображения.

Магнитопорошковый метод предназначен для выявления поверхностных и подповерхностных нарушений сплошности: волосовин, трещин различного происхождения, непроваров сварных соединений, флокенов, закатов, надрывов и т.п.

Чувствительность магнитопорошкового метода определяется магнитными характеристиками материала объекта контроля, его формой, размерами и шероховатостью поверхности, напряженностью намагничивающего поля, местоположением и ориентацией дефектов, взаимным направлением намагничивающего поля и дефекта, свойствами дефектоскопического материала, способом его нанесения на объект контроля, а также способом и условиями регистрации индикаторного рисунка выявляемых дефектов.

Магнитопорошковый контроль проводится по технологическим картам согласно требованиям ГОСТ 3.1102-81 и ГОСТ 3.1502-85, в которых указываются: наименование изделия (узла), наименование и номер детали, эскиз детали с указанием габаритных размеров, зона контроля, способ контроля, вид и схема намагничивания, значения намагничивающего тока или напряженности магнитного поля, средства контроля (аппаратура, дефектоскопические материалы), нормы на отбраковку.

Участок магнитопорошкового контроля оборудован подъемно-транспортными механизмами и поворотным стендом.

Дефектоскопирование корпуса автосцепки проводится на поворотном стенде. Контроль проводится дефектоскопом МД-12ПШ (напряжение – 242В, сила тока не менее 45А, напряжение магнитного поля соленоида не менее 180 А/см).

Дефектоскоп МД-12 ПШ (рисунок 4.1) предназначен для обнаружение поверхностных поперечных трещин в шейках и предступичных частей осей вагонных колёсных пар, а также трещин в хвостовика и зоне перехода от хвостовика к голове.
Рисунок 4.1 – Магнитопорошковый дефектоскоп МД-12 ПШ
Дефектоскоп включает в себя следующие устройства: блок управления (масса 59 кг; габариты 275х520х320 мм); намагничивающее устройство( масса 9 кг; габариты не более 508х76х330 мм).

Дефектоскоп снабжен измерителем намагничивающего тока. Погрешность измерений не превышает 10%.

Требования к дефектоскопам устанавливают в отраслевой нормативно-технической документации на контроль конкретных изделий.

Требования к защите от вредного воздействия постоянных магнитных полей соответствуют «Предельно допустимым уровням воздействия постоянных магнитных полей при работе с магнитными устройствами и магнитными материалами» № 1742- 77, утвержденным Минздравом СССР.

При магнитопорошковом методе контроля корпуса автосцепки применяют порошки. Основные свойства магнитных порошков, влияющих на выявляемость дефектов: дисперсность, магнитные и оптические характеристики. Качество магнитных порошков оценивается по методикам, приведенным в отраслевой нормативно-технической документации на их поставку.

Качество готовых дефектоскопических материалов определяется перед проведением контроля на стандартных образцах предприятий, аттестованных в установленном порядке.

Магнитопорошковый метод контроля включает технологические операции: подготовка к контролю; намагничивание объекта контроля; нанесение дефектоскопического материала на объект контроля; осмотр контролируемой поверхности и регистрация индикаторных рисунков дефектов; оценка результатов контроля; размагничивание.

Для уменьшения нагрева объекта контроля применяют прерывистый режим намагничивания, при котором ток по намагничивающему устройству пропускают в течение 0,1 - 3 с с перерывами до 5 с.

Подготовка к контролю включает в себя: подготовку корпуса автосцепки к операциям контроля; проверку работоспособности дефектоскопов; проверку качества дефектоскопических материалов.

При подготовке объема с контролируемой поверхности корпуса автосцепки удаляют продукты коррозии, остатки окалины, масляные загрязнения, а при необходимости следы лакокрасочных покрытий. При зачистке поверхностей шлифовальной машиной негативно влияет на здоровье: шум, вибрация, а также выброс абразива. Поэтому зачистка производится на специально выделенном месте, оборудованном индивидуальным пылеотсасывающим устройством. Применение абразивного инструмента производится с соблюдением требований ГОСТ 12.3.028-82. Уровень шума не превышает 75 дБ (ПС-75) при частоте 1000 Гц ГОСТ 12.1.003-85 ССБТ «Шум. Общие требования безопасности».

При проведении магнитопорошкового контроля есть опасность электротравм. Для избежания электротравм проводят такие мероприятия, как надежное защитное зануление корпусов электроустановок; а также защитное зануление стенда для установки деталей, в соответствии с ГОСТ12.11.030-81. Обеспечивают надежную изоляцию и защиту от механических повреждений рабочих проводов, подводящих ток от сварочной машины или трансформатора. Применяют диэлектрические материалы при изготовлении рукояток электрододержателей. Не допускают соединение сварочной цепи электросварочного аппарата с зануленным проводом или корпусом аппарата.

Проверку работоспособности дефектоскопов и качества дефектоскопических материалов осуществляют при помощи стандартных образцов предприятий, специально изготовленных или отобранных из числа забракованных изделий с дефектами, размеры которых соответствуют принятому уровню чувствительности.

К проведению магнитопорошкового контроля допускаются дефектоскописты, прошедшие аттестацию в установленном порядке, а также обучение и инструктаж.

Рабочее место дефектоскописта для выполнения работ стоя при контроле деталей корпуса автосцепки организовано при физической работе средней тяжести. Конструкция, взаимное расположение элементов рабочего места (органы управления, средства отображения информации и т.д.) соответствуют антропометрическим, физиологическим и психологическим требованиям, а также характеру работы. Рабочее место организовано в соответствии с требованиями стандартов, технических условий и (или) методических указаний по безопасности труда. Рабочее место дефектоскописта обеспечивает выполнение трудовых операций в пределах зоны досягаемости моторного поля. Зоны досягаемости моторного поля в вертикальной и горизонтальной плоскостях для средних размеров тела человека приведены на рисунках.

Выполнение операций контроля автосцепного устройства относятся к категории «очень часто» и обеспечено в пределах зоны легкой досягаемости и оптимальной зоны моторного поля.

Оборудование и организация рабочего места в контрольном пункте автосцепки организовано с учетом антропометрических показателей женщин (т.к. в нашем случае работает женщина - дефектоскопист), также рабочее место и конструкция поворотного стенда для дефектоскопии обеспечивают прямое и свободное положение корпуса тела дефектоскописта и наклон его вперед не более чем на 15°.



Рисунок 4.2 - Зона досягаемости моторного поля в вертикальной плоскости.



Рисунок 4.3 - Зона досягаемости моторного поля в горизонтальной плоскости
Регулируемые параметры в зависимости от тяжести труда и роста работающего выбирались по номограмме, приведенной на рисунке.



Рисунок 4.4 - Зоны для выполнения ручных операций и размещения органов управления в горизонтальной плоскости: 1 - зона для размещения очень часто используемых и наиболее важных органов управления (оптимальная зона моторного поля); 2 - зона для размещения часто используемых органов управления (зона легкой досягаемости моторного поля); 3 - зона для размещения редко используемых органов управления (зона досягаемости моторного поля)



Рисунок 4.5 - Зоны для выполнения ручных операций и размещения органов управления в вертикальной плоскости: 1 - зона для размещения очень часто используемых и наиболее важных органов управления (оптимальная зона моторного поля); 2 - зона для размещения часто используемых органов управления (зона легкой досягаемости моторного поля); 3 - зона для размещения редко используемых органов управления (зона досягаемости моторного поля)
Для обеспечения удобного, возможно близкого подходя к поворотному стенду для дефектоскопирования предусмотрено пространство для стоп размером 150 мм по глубине, 150 мм по высоте и 530 мм по ширине.

Отходы производства в виде отработанных дефектоскопических материалов удаляются в установленные сборники.

Результаты контроля записывают в журнал регистрации результатов неразрушающего контроля корпуса автосцепки.

Рабочие в КПА обеспечены специальной одеждой, отвечающей требованиям ГОСТ 27575-87.

Микроклимат помещения соответствует ГОСТ 12.1.005-88 ССБТ «Воздух рабочей зоны. Общие санитарно-гигиенические требования»:

  • температура воздуха в помещении в летнее время не выше +24 ºС, в зимнее время не ниже +12 ºС;

  • стены окрашены в светло-зеленый цвет, потолок в белый;

  • скорость движения воздушных масс в летнее время на более 0,5 м/с, в зимнее время не более 0,2 м/с;

  • относительная влажность не более 70%;

  • освещение с КЕО не менее 50%, на рабочих местах не менее 300 лк.

При разборке поглощающего аппарата на стенде возникает опасность заклинивания деталей. Такой аппарат не разбирается. Обстукивание корпуса аппарата с заклинившими деталями производится только без выемки аппарата и передней упорной плиты из тягового хомута.

Для обеспечения пожарной безопасности контрольный пункт автосцепки оборудован пожарной сигнализацией. На видном и легко доступном месте размещены план эвакуации людей и пожарные щиты с набором: ящик с песком – 1 шт.; огнетушитель – 2 шт.; лопата – 2 шт.; лом –1 шт.; топор – 2 шт.; куски плотного волокна, отвечающие требованиям СНиП-II-М2-72, ГОСТ 12.1.010-76 ССБТ «Взрывоопасность. Общие требования» и ГОСТ 12.1.004-91 ССБТ «Пожарная безопасность. Общие требования».
4.1.1 Расчет искусственного освещения помещения с использованием разрядных ламп высокого давления

Контрольный пункт автосцепки имеет искусственное и естественное освещение. У работающих могут возникать нарушения зрения, механические повреждения при плохой видимости предметов, оборудовании и перевозимых грузов. Особенно это важно при проведении контроля деталей корпуса автосцепного устройства. Нормирование и расчет естественного освещения производится с учетом поясов светового климата Российской Федерации СНиП 23-05-95. Для искусственного рассчитаем общее равномерное освещение в контрольном пункте автосцепки.

Исходные данные:

  • длина помещения А = 24 м;

  • ширина помещения В = 18 м;

  • высота помещения Н = 3,6 м;

  • коэффициенты отражения:

потолка ρn = 50 %;

стен ρc = 50 %;

рабочей поверхности ρР = 30 %.

Выбираем источник света. Принимаем разрядные лампы высокого давления типа ДРЛ.

Выбираем тип светильника. Принимаем светильник РСП 05 с кривой силы света (КСС) типа Д.

Принимаем свеc светильника hС = 0,5 м.

Принимаем высоту рабочей поверхности в соответствии ОСТ 32.120-98, hР = 0,8 м.

Определяем расчетную высоту подвеса светильника НР по формуле
HР = 3,6 – 0,5 – 0,8 = 3,1 м (4.1.1)
Определяем оптимальное расстояние между светильниками L по формуле (4.1.2). Для светильников с КСС типа Д принимаем λ = 1,6
L =1,6·3,1 = 4,9 м (4.1.2)
Учитывая шаг колонн l = 3 м, принимаем L = 5 м, располагая светильники на фермах.

Определяем число светильников по длине помещения nА по формуле (4.1.3)
nА = A/L (4.1.3)

nА = 24/5= 4,8=5 шт.
Определяем число светильников по ширине помещения nВ по формуле
nВ =В/L (4.1.4)

nВ = 18/5 = 3,6 шт.
Принимаем nВ = 4 шт.

Определяем общее число светильников по формуле
N = 5·4= 20 шт. (4.1.5)
Выбираем нормированное значение освещенности по ОСТ 32.120-98 Для контрольного пункта автосцепки принимаем ЕН = 200 лк (разряд зрительной работы – IV, в.).

Определяем площадь помещения по формуле
S = 24·18 = 432 м2 (4.1.6)
Выбираем коэффициент запаса K = 1,5.

Принимаем коэффициент неравномерной освещенности Z = 1,15.

Определяем индекс помещения φ по формуле
Φ = 432/3,1∙(24 + 18) = 3,8 (4.1.7)
Выбираем коэффициент использования светового потока η

Для светильников с КСС типа Д при ρn = 0,5, ρc = 0,5, ρр = 0,3, индексе помещения φ = 1,7 с учетом интерполяции принимаем η = 0,67.

Определяем необходимый световой поток одной лампы
F = 200·432·1,5·1,5/20·0,67 = 6300 лм. (4.1.8)
Выбираем лампу ДРЛ-125 мощностью 125 Вт со световым потоком Fл = 6300 лм.

Определяем фактическое значение освещенности Eфакт по формуле
Eфакт = 200·6300/6300 = 200 лк. (4.1.9)
Определяем отклонение фактической освещенности от нормативного значения Δ по формуле
Δ = 100(200 − 200)/200 = 0 % (4.1.10)
Фактическое значение освещенности не превышает нормированного значения более чем на 20 %, что удовлетворяет требованиям СНиП 23-05-95.

4.2 Охрана окружающей среды
4.2.1 Общая характеристика контрольного пункта автосцепки пассажирского вагонного депо Ростов с точки зрения его влияния на окружающую среду

Контрольный пункт автосцепки является одним из участков пассажирского вагонного депо, расположенного в городе Ростов-на-Дону. Депо предназначено для выполнения плановых видов ремонта пассажирских вагонов, ремонта и комплектования узлов и деталей.

Вагонное депо расположено на одной площадке в северо-западной части населенного пункта. Общая площадь 5,3 Га. С северо-запада расположено локомотивное депо, с востока – энергоучасток, с юго-востока – автохозяйство, с юго-запада – НОДХ, с юга - жилая зона на расстоянии 10 м от территории депо. С учетом требований СанПиН 2.2.1/2.2.1.1200-03/1/ промышленная площадка депо по производственной деятельности относится к предприятиям IV класса с размером санитарно-защитной зоны – 100 м.

Вагонное депо относится к неэкологичным производствам и оказывает вредное влияние на окружающую среду. Со стороны вагонного депо химические и физические загрязнения осуществляются посредством выбросов в атмосферу и со сточными водами.

Основная масса выбросов в атмосферу приходится на долю котельной, использующей в качестве топлива жидкий мазут, что составляет 97,8 % от общего выброса или 34,709 т/год. Выбросы котельной содержат: СО, NО, SО2, а также особо вредные для здоровья ароматические углеводороды и ряд других веществ, обладающих канцерогенным свойством.

В вагоносборочном участке производится деповской ремонт вагонов, который предусматривает ремонт ходовой части, ударно-тяговых приборов, разборка вагонов на узлы и запчасти, которые ремонтируются в соответствующих цехах, а после ремонта сборка вагонов. Участок снабжен общеобменной вентиляцией (2 осевых вентилятора, 2 вентилятора). Отходом этих работ является металлическая стружка.

Наряду с этим, в вагоносборочном участке опасными для окружающей среды являются сварочные аппараты. Во время сварочных работ, взависимости от используемых электродов, выделяются вредные вещества, такие как марганец и его соединения, сварочный аэрозоль, соединения кремния, фториды, оксид железа и т.д. В результате проведения сварочных работ происходит накопление остатков отработанных электродов.

Перед ремонтом происходит обмывка вагонов в моечной машине. В процессе данной обмывки с вагонов смывается большое количество загрязнений: частиц грунта, старой краски, путевого балласта. Также в воду в моечных машинах добавляются различные растворители, поэтому сточные воды также оказывают негативное влияние на окружающую среду.

К одним из вредных факторов относится и шумовое загрязнение, оно происходит вследствии работы двигателей локомотивов, различного оборудования в ремонтных цехах и отделениях.

При частичной окраске отремонтированного вагона, а также при нанесении знаков и надписей используются кисти, краскопульт, работающий 125 часов в год, и краска, в состав которой входят загрязняющие атмосферу вещества: азота двуокись, углерода окись, ксилол и уайт-спирт. В процессе окраски в атмосферу выбрасываются пары растворителей, аэрозоли красок, пыль минеральная, загрязненные сточные воды, пыль органическая. Образуются отходы краски и тары.

В вагоносборочном участке искусственное освещение осуществляется люминесцентными лампами, в результате чего образуются отходы отработанных люминесцентных ламп. Кроме того, в участке в процессе ремонта образуются твердые бытовые отходы, а также отходы масел и ветоши.

Так же имеет место электромагнитное загрязнение, возникающее вблизи высоковольтных линий промышленной частоты (50 Гц). Установлен факт влияния высоковольтных линий на геомагнитные процессы.

Депо является одним из основных загрязнителей атмосферного воздуха по диоксиду серы, оксиду углерода, диоксиду азота и пыли неорганической. В настоящее время выбросы предприятия по диоксиду азота составляют – 20,778 т/год, по оксиду углерода – 55,112 т/год, по серы дуоксиду – 11,760 т/год (или 18,63%, 46,42% и 10,54% соответственно от валовых выбросов депо).

Источниками образования вредностей в контрольном пункте автосцепок являются: сварочные посты, станки механической обработки деталей.

Производство работ сопровождается образованием и выделением следующих загрязняющих веществ: взвешенных веществ, марганца и его соединений, оксид железа, масла минерального, металлической пыли. Выбросы от источников загрязнения атмосферы участка не создают концентрации, превышающих нормативы ПДК, установленных для населенных мест.

На участке при сварочных работах, являющихся обязательной составляющей технологического процесса ремонта автосцепок и её деталей, в воздух попадают такие вещества, как марганец и его соединения, окислы хрома, фториды, окислы азота и углерода, а также твердые частицы.

Законодательством РФ закреплена обязанность предприятий и организаций деятельность которых связана с выбросами загрязняющих веществ в атмосферу производить организационно-хозяйственные, технические и иные мероприятия для выполнения условий и требований, предусмотренных в разрешениях на выброс, принимать меры по снижению выбросов загрязняющих веществ, обеспечивать эффективную, бесперебойную работу и поддержанию в исправном состоянии сооружений, оборудования для очистки выбросов и контроля за ними, а также осуществлять постоянный учет количества и состава загрязняющих веществ.

Согласно федеральному закону «Об охране окружающей среды» вся проектируемая документация должна подвергаться экологической экспертизе, которая оценивает влияние объекта на окружающую среду; предприятия различных форм собственности и транспорта обязаны платить за загрязнение окружающей среды выбросами в атмосферу, сбросами в водоемы и при размещении твердых бытовых и производственных отходов на свалках и полигонах. В связи с этим Правительством РФ 12 июня 2003г. принято постановление №344, в котором утвердило новые нормативы платы и экологические коэффициенты.
4.2.2 Расчет выбросов вредных веществ в атмосферу при сварочных работах и плата за них

Произведем расчет выбросов вредных веществ при сварочных работах на участке по ремонту автосцепки, если ежедневный расход электродов УОНИ-13/45 составляет 8 кг. Сварочный пост оборудован системой вентиляции, выброс загрязненных газов осуществляется через трубу Н=20м.

Для электродов УОНИ-13/45 выбросы вредных веществ в атмосферу, при производстве сварочных работ, составляют Ег на кг электродов /27/:

- для твердых частиц – 18;

- для марганца и его соединений – 0,9;

- для окислов хрома – 1,4;

- для фторидов – 3,45;

- для фтороводорода – 0,75;

- для окиси азота – 1,5;

- для окиси углерода – 13,3.

За год на участке ремонта автосцепки расходуется электродов В=8·249=1984 кг

При использовании электродов УОНИ-13/45 при сварке в атмосферный воздух выбрасывается количество вредных веществ, определяемое по формуле
(4.2.1)
где - удельный выброс i-го загрязнителя при производстве сварочных работ в зависимости от типа электродов, г/кг; - масса расходуемых на проведение сварочных работ электродов, кг/год.

Твердых частиц
Мт.ч.=18·1984·10-3=27,11 кг/год
Марганец и его соединения
МMn.=0,9·1984·10-3=1,36 кг/год
Окислов хрома
МCr=1,4·1984·10-3=2,11 кг/год
Фторидов
Мф.=3,45·1984·10-3=5,20 кг/год
Фтороводорода
МHF=0,75·1984·10-3=1,13 кг/год
Окиси азота
МNo=1,5·1984·10-3=2,26 кг/год
Окиси углерода
МСО=13,3·1984·10-3=20,03 кг/год
Суммарные годовые выбросы веществ определяются
кг/год
Для расчета предельно допустимых выбросов через вентиляционные системы необходимо определить расход воздуха в них. Объемный расход воздуха Q, м3/с приближенно можно определить по секундной массе суммарных выбросов МΣ.

Полагая, что сварочные посты работают ежедневно 8 часов в сутки, а депо 248 дней в году, рассчитаем секундную массу суммарных выбросов по формуле
(4.2.2)
где n – число часов работы вентиляционной системы в сутки;

Т – количество рабочих дней в году.
кг/с
Рассчитаем расход воздуха и параметры вентиляционной трубы по формуле
(4.2.3)

м3
Принимаем скорость воздуха в вентиляционной системе V=2,5 м/с, тогда площадь поперечного сечения вентиляционных коробов определим по формуле
(4.2.4)

м2
Определим диаметр вентиляционной трубы по формуле
(4.2.5)

м
Для дальнейших расчетов примем Д=0,3 м.

Определим ПДВ для каждого загрязняющего вещества по формуле
(4.2.6)
где - максимально разовая предельно допустимая концентрация в приземном слое атмосферы, мг/м3;

- фоновая концентрация загрязняющего вещества, мг/м3;

- высота дымовой трубы, м;

- коэффициент стратификации атмосферы;

- коэффициент, учитывающий скорость оседания вредных веществ в атмосфере (для твердых частиц F=3, для газообразных F=1);

- коэффициенты, учитывающие условия выхода газо-воздушной смеси из устья трубы, принимаем m, n = 1;

- коэффициент, учитывающий влияние рельефа местности на рассеивание примесей, для равнинной местности ;

- объемный расход дымовых газов для данного производства, м3/с.

Рассчитаем ПДВ для твердых частиц, если известно, что ПДКм.р.=0,15 мг/м3.
Сф=0,1ПДКм.р. (4.2.7)

Сф=0,1·0,15=0,015 мг/м3

Н=20 м; Q=3,28·10-3м3/с; Д=0,3 м.
Значение А для Северного Кавказа равно 200; F для пыли равно 3; m·n=1; E=1, тогда
кг/с

кг/с

кг/с

кг/с

кг/с

кг/с

кг/с
Определим фактические выбросы и предельно-допустимые годовые выбросы, если продолжительность их составляет

Годовая продолжительность выбросов при сварке и наплавке составляет
с / год

ПДВпыли=0,0011·7,14·=0,008 кг/год
Результаты расчета заносим в таблицу 18
Таблица 18 - Фактические и предельно допустимые выбросы загрязняющих веществ

Загрязняющее вещество

Фактические выбросы

ПДВ

кг/с

т/год

кг/с

т/год

Твердые частицы

Марганец и его соединения

Окислы хрома

Фториды

Фтороводород

Окислы азота

Окислы углерода

27,11

1,36

2,11

5,20

1,13

2,26

20,03

0,027

0,001

0,003

0,005

0,001

0,002

0,020

0,0011

0,00007

0,0002

0,0006

0,0004

0,013

0,107

0,0079

0,0005

0,0014

0,004

0,0029

0,094

0,774
1   2   3   4   5   6   7   8

Похожие:

Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon Системы автоматизации технологических процессов проектирование электрических...
Всн 281-75/Минприбор СССР "Временных указаний по проектированию систем автоматизация технологических процессов"
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon Монтаж пуско-защитной аппаратуры, щитов
Сельское хозяйство является основным потребителем низковольтной аппаратуры, предназначенной для коммутации электрических цепей, управления...
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon Оптимизация технологических процессов энергоремонтного производства
В условиях рыночных отношений важной задачей становится четкое проведение организационных и технологических мероприятий, обеспечивающих...
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon Методика анализа пожаровзрывоопасности технологических процессов производств
Исследования пожарной опасности технологических процессов производств проводятся поэтапно
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon Инструкция по эксплуатации зданий и сооружений
Требования к эксплуатации строительных конструкций в условиях особых воздействий технологических процессов
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon Паспорт рабочей программы профессионального модуля пм. 01 Организация...
Организация и выполнение технологических процессов парикмахерских услуг и соответствующих профессиональных компетенций (ПК)
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon Методические указания по выполнению практических работ для студентов...
Пм 03 «Участие во внедрении технологических процессов изготовления деталей машин и осуществление технического контроля»
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon Профессиональный стандарт
Проведение технологических процессов по погрузке, выгрузке, транспортировке и внутрискладской обработке грузов различного назначения...
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon Отчет о самообследовании программы подготовки специалистов среднего...
«Автоматизация технологических процессов и производств (в строительстве)», реализуемой в федеральном государственном образовательном...
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon Отчет о самообследовании программы подготовки специалистов среднего...
«Автоматизация технологических процессов и производств (в машиностроении)», реализуемой в федеральном государственном образовательном...
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon Клапанную коробку
Технология машиностроения должна изучать закономерность протекания технологических процессов и выявить параметры, воздействуя на...
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon План Введение 2 Глава Ценовые стратегии корпоративных предприятий...
В условиях конкурентного рынка цена формируется преимущественно под воздействием факторов, объективно складывающихся независимо от...
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon Кафедра транспортных процессов и технологий
«Технология и организация ремонта Титтмо (модуль 1)», составлена в соответствии с требованиями опоп во для студентов направления...
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon О мерах пожарной безопасности при эксплуатации электрических новогодних...
...
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon Программа учебной практики программы подготовки специалистов среднего...
Программа учебной практики разработана в соответствии с требованиями фгос спо по специальности 15. 02. 07 Автоматизация технологических...
Технология вагоностроения в современных условиях основывается на применении большого числа разнообразных технологических процессов механических, электрических icon Требования к выполнению электроустановок систем автоматизации во взрывоопасных зонах рм4-223-89
Ем по проектированию электроустановок систем автоматизации технологических процессов во взрывоопасных производствах, проектно-сметная...

Руководство, инструкция по применению






При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск