Скачать 4.24 Mb.
|
Исследования, проведенные на больших выборках, дают все основания сделать вывод о том, что 85 % людей имеют положительную плавучесть. Но, несмотря ни на что, есть один весьма принципиальный момент, заслуживающий самого пристального внимания: средняя плотность человеческого тела равна (±) единице. На вдохе она чуть меньше единицы, на выдохе ЎЄ чуть больше. Если же вспомнить, что и средняя плотность воды также равна единице (±), то вывод напрашивается сам собой: утонуть в воде практически невозможно! Организм человека предрасположен к воде! Умение находиться в воде без движения и в плавучем состоянии (еще лучше: при этом уметь беспрепятственно дышать) ЎЄ крайне важно в решении проблемы непотопляемости. Именно статическое плавание дает возможность отдыха на воде, особенно в минуты психогенной напряженности. Элементарными упражнениями для овладения подобным навыком являются «поплавок», «медуза», «звезда», «стрела». Начинать разучивать позу отдыха целесообразно в положении на спине при отсутствии волн. Чтобы обеспечить устойчивое равновесие в воде, достаточно завести прямые руки за голову. При этом центр тяжести переместится чуть ближе к голове и окажется рядом с общим центром давления. Если этого окажется недостаточно (ноги все-таки продолжают опускаться), можно высунуть из воды пальцы или кисти рук. Ноги сразу всплывут и появятся над водой. Бывает достаточно раскинуть руки чуть в стороны или широко развести ноги. Наконец, можно просто согнуть ноги в коленях и добиться того же эффекта равновесия. 41 Как видно из данных примеров, есть много возможностей поддерживать горизонтальное равновесие тела в воде. Важно «почувствовать» это положение и научиться долго находиться в такой позе. И все же главное, о чем нужно всегда помнить: плавучесть невозможна без полного глубокого вдоха. Это ЎЄ непременное условие. Особенно это нужно помнить преподавателю при обучении элементам начального плавания. Позу отдыха на спине целесообразно начинать разучивать на суше. При этом необходимо добиться полного расслабления мышц. Существуют и другие способы и приемы отдыха на воде, но отмеченный выше ЎЄ наиболее прост. Гидродинамика Весь анализ движений пловца базируется на наиболее общих закономерностях гидродинамики. Он весьма сложен. Сложность прежде всего заключается в том, что движения происходят в плоскости, пограничной между двумя средами: водой и воздухом. Если к этому добавить принципиальное отличие водной среды, несовершенную с точки зрения гидродинамики форму человеческого тела, задачи становятся еще более трудными. Кроме того, при движении тело пловца постоянно меняет свое положение. Таким образом, движения пловца характеризуются целым комплексом параметров. В этой связи представляется целесообразным разобраться в основных причинно-следственных связях, определяющих эффективность движений. На движущееся тело действуют силы тяжести, силы тяги, силы гидродинамического сопротивления, подъемные силы. Единственно неизменными и постоянно действующими являются силы тяжести, остальные силы ЎЄ переменны. Сила, с которой вода действует на движущееся в ней тело, 42 складывается из сил трения и сил давления. Ее называют силой реакции воды. Поскольку сила ЎЄ векторная величина, по правилу параллелограмма ее можно разложить на две составляющие: гори- зонтальную и вертикальную, а за основу принять направленность потока воды; при этом горизонтальная составляющая есть не что иное, как сила лобового сопротивления, а вертикальная составляющая ЎЄ подъемная сила (рис. 5). Лобовое сопротивление может быть вычислено по формуле: где: р ЎЄ плотность воды; S ЎЄ площадь проекции тела на плоскость, перпендикулярную направлению движения тела; v ЎЄ скорость движения тела; С ЎЄ коэффициент лобового сопротивления (величина безразмерная). Величина коэффициента Сх непостоянна. Она зависит от формы и размеров тела, его ориентации относительно набегающих потоков и других факторов. Ориентация тела в потоке характеризуется углом атаки. Угол имеет две составляющие: продольную ось тела пловца и направление его движения. С увеличением угла атаки коэффициент Сх непрерывно повышается и достигает максимума, когда тело принимает положение, перпендикулярное потоку воды (угол = 90°). Данная формула в литературе (Н.А. Бутович, 1962) имеет и несколько иной вид. Суммарная сила сопротивления воды может быть выражена так: где; R ЎЄ суммарная сила сопротивления воды; а ЎЄ коэффициент сопротивления формы; с ЎЄ коэффициент сопротивления трения; q ЎЄ коэффициент волнового сопротивления; s ЎЄ площадь миделева сечения погруженной в воду части тела пловца; р ЎЄ плотность воды; v ЎЄ скорость продвижения пловца. Для упрощения этой формулы половину коэффициентов произведения, т. е. acq/2 можно заменить одним общим коэффи- 43 циентом К сопротивления среды (воды) в данных условиях (форма тела пловца, состояние поверхности тела, волнообразование в данном бассейне). Формула примет вид: Так как плотность воды практически равна единице, окончательно формула будет выглядеть так: В свою очередь, положение тела во многом зависит от скорости его движения. Впервые зависимость была изучена методом буксировки в воде (СМ. Гордон, 1968). Результатом проделанных опытов явилась кривая зависимости сопротивления от скорости, которая по форме была близка квадратичной параболе, причем картина почти совпадала при буксировке под водой и по поверхности (под водой условия те же самые, отсутствует лишь сопротивление волнообразования). Выравнивание эмпирического ряда регрессии способом наименьших квадратов привело к уравнению: где: R ЎЄ суммарная величина сопротивления; К ЎЄ безразмерный коэффициент сопротивления; v ЎЄ скорость буксировки. В литературе можно встретить и множество других формул, подобных этим. При их прочтении и анализе необходимо помнить, что все они справедливы лишь для какого-то частного случая и отражают одномоментное состояние. В целом гидродинамическая ситуация гораздо сложнее и не укладывается в рамки какой-либо формулы. Привлекает внимание один принципиальный момент: взаимосвязь сопротивления и скорости перемещения тела. Правда, следует заметить, что квадратичная зависимость, приводимая большинством авторов, постулируется для абсолютно твердых тел, для случаев неизменного сечения Миделя. В реальности картина иная. Величина степени может быть различна: 1,5 (О.И. Логунова, А.А. Ваньков, 1971), 1,87 (И.Г. Сафарян, 1969) и т.д. Несомненно одно: есть сопротивление, оказывае- 44 мое средой движущемуся телу, и есть попытка оценить это сопротивление, подвергая, в частности, его анализу и используя при этом модельные опыты. Однако модель ЎЄ это еще не естественная гидродинамическая ситуация. Последняя намного сложнее. Значит, требуются еще более подробный анализ и весьма осторожная его оценка. Именно поэтому в литературе существует обилие разных терминов: сопротивление трения, сопротивление вихреобразова-ния, сопротивление волнообразования, активное сопротивление, пассивное сопротивление, сопротивление формы, лобовое сопротивление и т.д. Для анализа чаще всего используется классификация общего сопротивления на: сопротивление трения, сопротивление вихреобразования, сопротивление волнообразования (А.А. Ваньков, 1958; Н.А. Бутович, 1965; СМ. Гордон, 1968; Н.Ж. Булгакова, 1979; 1984; Б.Н. Никитский, 1981; Д. Каун-силмен, 1982, и др.). Сопротивление возникает вследствие движения в вязкой жидкости. В физике медленное течение в стационарном потоке несжимаемой жидкости (воду можно условно принять за таковую) описано в виде известной формулы Стокса: где: F ЎЄ сила сопротивления медленно движущемуся телу (шару); R ЎЄ радиус шара; г ЎЄ динамическая вязкость жидкости; v ЎЄ скорость движения тела. Обращает на себя внимание тот факт, что сила сопротивления пропорциональна первым степеням скорости и линейным размерам тела. Как отмечают авторы, такая зависимость справедлива и для медленно движущихся тел иной формы. Опыты в стеклянных трубках показывают, что при относительно низких скоростях движения жидкость в своем поведении подчиняется законам ламинарного тока, то есть движение жидкости слоисто. Каждый отдельный слой перемещается со своей строго определенной скоростью. Частицы в потоке рас- 45 полагаются не хаотично, как это можно было бы предположить, а строго упорядочение: не перемешиваясь, оставаясь в пределах одного и того же слоя. При движении по стеклянной трубке формируется профиль скорости (рис. 6). Непосредственно у стенки скорость течения жидкости равна 0, а в цент- ральной части, на оси трубки ЎЄ максимальная. Если скорость набегающего потока велика, происходит энергичное перемещение частиц в поперечном направлении. Такой беспорядочно завихренный ток называется турбулентным. Примечательно, что перемешивание частиц начинается в близлежащем, пограничном с поверхностью тела, слое и во многом определяется состоянием поверхности. Взаимодействие между отдельными слоями жидкости, а также пограничным слоем и поверхностью тела вместе составляют сопротивление трения. Сопротивление трения. При движении тела частицы близлежащего слоя взаимодействуют с поверхностью (рис. 7). В результате такого взаимодействия возникает самое обычное противоречие: при набегающем потоке частицы близлежащего слоя движутся в одну сторону, а тело ЎЄ в другую; либо то же самое происходит относительно неподвижных частиц, обладающих запасом потенциальной энергии. Это взаимодействие, или это противоречие, и есть не что иное, как трение. Более того, частицы не просто оказываются движущимися относительно тела: в результате трения они замедляют свое движение, вплоть до полной остановки. Возникает так называемый сли-пинг-эффект (самое обычное прилипание к поверхности). Аналогично поведение частиц близлежащих слоев. 46 В результате вокруг движущегося тела формируется своего рода водный чехол, движущийся вместе с телом и тормозящий его продвижение. При обычном скольжении человека в вытянутом положении (руки вперед) возмущение распространяется во все стороны примерно на 70 см. Можно себе представить, какой огромный объем воды пловец «тащит» за собой и какую часть своей энергии затрачивает на это. При анализе данного вида сопротивления чаще всего рассматриваются структура «пограничного слоя» (общепринятый термин) и физические процессы, которые там происходят. Считается, что именно этими характеристиками определяется величина силы трения. Пограничным слоем называется тонкий слой заторможенной воды, образующийся на поверхности тел. Под «границей» понимают условную линию поверхности, на которой скорость частиц пограничного слоя тела становится равной скорости набегающего тела. На поверхности тела спортсмена толщина пограничного слоя может достигать нескольких миллиметров. Увлекаемый телом поток называют еще попутным. Рассмотрим характер движения частиц в пограничном слое. Вследствие разности скоростей частицы приходят во вращательное движение. Вращение частиц тем интенсивнее, чем ближе частица находится к поверхности тела. Вне пограничного слоя частицы не вращаются, если поток, обтекающий тело, не завихрен. Пограничный же слой всегда завихрен. Характер течения в пограничном слое зависит от скорости набегающего потока v, характерного для этого тела, размера тела (длина, рост L), кинематического коэффициента вязкости А. и определяется через безразмерное число Рейнольдса (Re): »ЃЎ Число Рейнольдса характеризует отношение сил инерции к силам вязкости жидкости. При небольшой скорости набегающего потока вода в пограничном слое течет в виде отдельных слоев. Однако это не означает, что движение происходит без завихрений. Это лишь доказывает, что движение упорядоченно, слои не смешиваются, а частицы вращаются только вокруг осей, перпендикулярных плоскости потока, оставаясь всегда в пределах одного слоя. Перемешивания частиц в поперечном направлении нет. Если же 47 скорость набегающего потока велика, то происходит энергичное перемешивание. Пограничный слой становится турбулентным. Поскольку кожа пловца не содержит идеально гладких поверхностей, а движения тела или его отдельных частей постоянно изменяются во времени и в пространстве, характер течения воды в пограничном слое при плавании человека всегда турбулентен. Ламинарность же потока рассматривается как модель, близкая к идеальной. У рыб и морских животных пограничный слой очень тонок. Его максимальная величина составляет не более нескольких процентов от толщины рыбы. Таким образом, скорость для многих рыб оказывается независимой от размеров тела. Относительный вклад данного вида сопротивления ЎЄ примерно 15 % . Этот вид сопротивления играет существенную роль лишь тогда, когда тело имеет правильную сигарообразную форму и обтекаемо. Напротив, у человека даже в вытянутом положении возмущение жидкости значительно, и при его пассивной буксировке не наблюдается плавного обтекания потоками. Как же на практике учитывать влияние сопротивления трения? Во-первых, следует помнить, что снижению сопротивления трения способствует более обтекаемая форма; во-вторых, следить за оптимальным положением тела в воде, избегать его излишних прогибов, в частности в грудном и поясничном отделах; в-третьих ЎЄ тщательно подбирать купальный костюм; в-четвертых ЎЄ использовать различные смазки (если, конечно, речь не идет о чисто спортивном плавании). Особого разговора заслуживает купальный костюм пловца. Сегодня ЎЄ это сложная конструкция синтетической непромокаемой ткани, плотно облегающая фигуру спортсмена. Требования к купальному костюму оговариваются правилами соревнований. Бытует еще мнение, что на сопротивление трения существенное влияние оказывает волосяной покров кожи. В специальной литературе практически отсутствуют сведения, свидетельствующие о том, что такая взаимосвязь действительно существует. Кроме того, выполнялись отдельные экспериментальные работы, которые показали отсутствие статистически значимых отличий. Скорее, это проблема психологического порядка. Не случайно высококвалифицированные спортсмены сбривают волосяной покров перед ответственным финальным заплывом и никогда не делают это по несколько раз в день: тем самым удается лучше «почувствовать воду». Сопротивление вихреобразования. Что такое вихрь? Вихрь ЎЄ это группа частиц жидкости, вращающихся вокруг одной мгновенной оси с одинаковой угловой скоростью. Ось может быть подвижна и неподвижна в пространстве. Вихри образуются на границе смежных слоев воды, текущих с разными скоростями, например, в пограничном слое. Они могут возникать при резком изменении направлений течения, наблюдающихся у тел, помещенных в потоки жидкости, либо вследствие рабочих движений пловца; например, в кроле на груди ЎЄ в момент перехода рабочего движения ногами в подготовительное, когда резко меняется направление движения. Вихри образуются на поверхности руки в момент выполнения ею рабочего движения. Вихри остаются в следе после проплы-вания спортсмена, они формируются на границе «воздухЎЄвода» в соответствующих способах плавания. Образованию вихрей способствует и неправильная форма человеческого тела, несмотря на благоприятное соотношение длиннотных и поперечных размеров тела (оно примерно такое же, как у рыб и морских животных ЎЄ 6:1). Выступающие части тела, ЎЄ такие, как голова, плечи, ягодицы, колени, стопы, ЎЄ не способствуют равномерному обтеканию потоками жидкости. Фактически вихреобразование начинается уже на уровне головы и линии плеч, но все-таки отрыв струй жидкости происходит большей частью сзади движущегося тела. |
Учебное пособие предназначено для бакалавров юридических вузов. Предисловие... Его содержание соответствует государственному образовательному стандарту высшего профессионального образования по данной дисциплине... |
Учебное пособие по предмету «Автоматизация технологических процессов»... Учебное пособие написано в соответствии с типовой программой по предмету «Автоматизация технологических процессов»для обучающихся... |
||
Учебное пособие по дисциплине «Математики» Учебное пособие по дисциплине «Математики» разработано в соответствии с требованиями федерального государственного образовательного... |
Учебное пособие разработано в соответствии с требованиями фгос спо,... Учебное пособие для студентов образовательных учреждений среднего профессионального образования |
||
Учебное пособие Больничная гигиена Москва Российский университет... В пособии представлены основные разделы больничной гигиены. Учебное пособие подготовлено в соответствии с программой по специальности... |
Учебное пособие Тольятти 2011 г. Авторы: Савкин С. А., Рынгач В.... Учебное пособие предназначено для студентов, изучающих предмет «Артиллерийская разведка». Он составлен в соответствии с программой... |
||
Учебное пособие ппи, 2008 104 с.: ил. Учебное пособие по дисциплине... Учебное пособие по дисциплине «Конструкторско-технологическое обеспечение производства эвм» предназначено для студентов Псковского... |
Учебное пособие «Русский язык и деловая документация» подготовлено... Пособие содержит теоретический материал по темам курса, вопросы для проверки знаний, упражнения для практической отработки навыков... |
||
Учебное пособие по дисциплине «медицина катастроф» Учебное пособие подготовили доценты Астапенко В. П., Кудинов В. В., Волкодав О. В., Кобец Ю. В |
Учебное пособие по дисциплине «медицина катастроф» Учебное пособие подготовили доценты Астапенко В. П., Кудинов В. В., Волкодав О. В., Кобец Ю. В |
||
Учебное пособие соответствует примерной учебной программе по дисциплине... Учебное пособие предназначено для студентов, обучающихся по специальности «Педиатрия» |
Учебное пособие по дисциплине "Технология производства и ремонта... Проектирование процессов сварки и наплавки деталей вагонов. Учебное пособие по дисциплине "Технология производства и ремонта вагонов".... |
||
Учебное пособие для самоподготовки по дисциплине «Организация и экономика фармации» Учебное пособие для самоподготовки по дисциплине «Организация и экономика фармации» предназначено студентов III курса по специальности... |
Компьютерные коммуникации в культуре учебное пособие по английскому языку Учебное пособие предназначено для развития навыков и умений устной речи. Пособие включает 8 тем, 21 текст, словарь. Текстовый материал... |
||
Компьютерные коммуникации в культуре учебное пособие по английскому языку Учебное пособие предназначено для развития навыков и умений устной речи. Пособие включает 8 тем, 21 текст, словарь. Текстовый материал... |
Учебное пособие по дисциплине «Основы латинского языка с медицинской терминологией» Учебное пособие может быть использовано на практических занятиях осеннего семестра студентами отделений: 34. 02. 01 «Сестринское... |
Поиск |