Скачать 0.82 Mb.
|
КЕМЕРОВСКИЙ ОБЪЕДИНЕННЫЙ УЧЕБНО-МЕТОДИЧЕСКИЙ ЦЕНТР ПО ГО И ЧС МАТЕРИАЛ для проведения занятий по программе дополнительной подготовки населения сейсмоопасных территорий Кемеровской области. Кемерово. 2005г. Предлагаемый материал рекомендуется в качестве пособия для проведения занятий по темам программы дополнительной подготовки учащихся образовательных учреждений сейсмоопасных территорий Кемеровской области к действиям при угрозе и возникновении чрезвычайных ситуаций, связанных с землетрясениями. Материал подготовлен Кемеровским объединённым УМЦ по ГО и ЧС в соответствии с требованиями распоряжения администрации Кемеровской области от 16.02.2005 года № 151-р. ТЕМА №1 «ЗЕМЛЕТРЯСЕНИЯ. ИХ ПРОИСХОЖДЕНИЕ И ХАРАКТЕРИСТИКА» Вероятность того, что вам когда-нибудь придется испытать землетрясение, и в самом деле довольно велика. С большинством людей это случается несколько раз в течение их жизни, и для многих встреча с землетрясением оказывается достаточно серьезной. В среднем по Земле один человек из каждых 8000 погибает при землетрясении, и вдесятеро больше за свою жизнь так или иначе страдают от землетрясения. Землетрясение – подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии Земли и передающееся на большие расстояния в виде упругих колебаний. По причинам возникновения землетрясения делятся на природные и антропогенные. Землетрясения природного характера возникают в результате тектонических процессов в коре Земли, при извержении вулканов, сильных обвалах, оползнях, обрушении карстовых пустот, падении метеоритов, столкновении Земли с космическими объектами. Землетрясения антропогенного характера возникают в результате деятельности человека и являются следствием взрывов большой мощности, обрушения подземных инженерных сооружений, продавливания верхнего слоя земной поверхности при сооружении искусственных водохранилищ с большим объемом содержания воды, возведения городов с высокой плотностью застройки многоэтажными зданиями. Землетрясения бывают вулканические, провальные, или обвальные, глубокофокусные, связанные с ударами о Землю космических тел, наведенные землетрясения, тектонические. Вулканические землетрясения являются следствием локального извержения лавы и взрывов газов. Они встречаются сравнительно редко, слабы по интенсивности и имеют ограниченную сферу влияния. Провальные, или обвальные землетрясения вызываются обширными обвалами карстовых пустот внутри Земли, заброшенных рудников, выгоревших торфяников. При этом сейсмические волны имеют незначительную силу и распространяются на небольшие расстояния. Глубокофокусные землетрясения происходят на очень больших глубинных под Землей (около 700 км). Причины их изучены мало. Они очень мощные, но из-за удаления очага от поверхности Земли на сотни километров не представляют собой большой опасности. Землетрясения, связанные с ударами о Землю космических тел, являются результатом ударов о Землю или взрывов в околоземном пространстве метеоритов, астероидов, комет. Наведенные землетрясения возникают в результате деятельности человека, например, при сооружении искусственных водохранилищ с большим запасом воды, строительстве многоэтажных зданий на ограниченной площади, добычи полезных ископаемых, создании подземных хранилищ, взрывах большой мощности. Тектонические землетрясения. Наиболее разрушительными и часто повторяющимися из перечисленных выше землетрясений, являются тектонические. Они – результат внезапного разрыва сплошного вещества Земли и смещения отдельных участков земной коры. Согласно теории земная кора состоит из 7 основных (больших) и 12 малых плит, расположенных относительно друг друга под разными углами и соединенных между собой участками меньшей прочности. Плиты находятся в постоянном движении, перемещаются под воздействием конвекционных течений, поднимающихся из высокотемпературных глубин. Таким образом, границы между плитами являются геологически активными зонами, называются сейсмическими швами. Одни плиты двигаются навстречу друг другу и иногда даже перекрываются, другие расходятся в стороны, третьи скользят вдоль границ противоположных направлениях. Каждый тип этих движений порождает определенный тип разломов, и все они вызывают тектонические землетрясения. Пока дрейф плит проходит беспрепятственно, землетрясения бывают слабыми. Но когда плиты надвигаются друг на друга и их движение тормозится, тогда горная порода, образующая громадные блоки, начинает деформироваться. В ней, как и в пружине, накапливается упругая энергия, тем большая, чем больший объем охвачен деформациями, пока не будет превзойдена прочность горной породы. Как только это происходит и порода начинает разрушаться, блоки получают возможность подвигаться скачками, а тектоническая энергия, накопленная в породе, освобождается в виде сейсмических волн – происходит сильное землетрясение. Время от времени в мире случаются и землетрясения во внутренних частях плит – так называемое внутриплитовые землетрясения. Область возникновения подземного удара в толще земной коры или верхней мантии, являющегося причиной землетрясения, называют очагом землетрясения. Он может находится на разной глубине: от нескольких до десятков, а порой и сотен километров. Наиболее опасными являются землетрясения с глубиной расположения очага 10 – 100 км. Центр очага землетрясения называется гипоцентром, а его проекция на земной поверхности – эпицентром. Эпицентр и прилегающая к нему область называются плейстосейсмовой зоной. Она характеризуется наибольшим воздействием землетрясения и самыми большими разрушениями. Сейсмические волны Большая часть выделившейся при землетрясении упругой энергии расходуется на разламывание и дробление пород, на вертикальное и горизонтальное смещение примыкающих блоков земной коры и на образование тепла. Небольшая часть энергии излучается во всех направлениях в окружающее пространство в виде сейсмических волн, которые распространяются в теле Земли. Когда волны достигают земной поверхности, они порождают те колебания почвы, которые мы воспринимаем как землетрясение. Существуют два основных типа сейсмических волн - объемные волны, распространяющиеся в объеме (или теле) Земли и подобные звуковым волнам, и поверхностные волны, идущие вдоль земной поверхности, подобно морским волнам. Объемные волны образуются непосредственно при вспарывании пород. Они излучаются в окружающей среде во всех направлениях, ослабевая по мере удаления от источника. Когда сейсмические волны сталкиваются с резким изменением свойств вещества в Земле или достигают ее поверхности, они отражаются и преломляются, образуя объемные волны нескольких типов. Однако два основных типа объемных волн - это волны Р (от латинского primae - первые) и S (secondae - вторые). Волны Р, бегущие быстрее волн S, приходят в точку наблюдения первыми и вызывают там первый толчок, сигнализирующий о том, что произошло землетрясения. Волны S обычно запаздывают на несколько секунд, вызывая следующий, обычно более резкий удар. В волнах Р частицы среды движутся вперед и назад вдоль направления распространения волны, поэтому для этой волны произошло бы название «тяни-толкай». Когда частицы движутся вперед-назад, они по очереди то сжимают, то растягивают вещество, совсем как в подводной звуковой волне. Волны S совсем иные, так как в них отдельные части вещества колеблются перпендикулярно направлению распространения волн; по этой причине волны S часто называют поперечными (поскольку волны S создают в веществе не сжатия, а сдвиговые напряжения, их называют также сдвиговыми волнами). Движение, которое мы ощущаем в любой точке земной поверхности, является результатом наложения волн разных типов. Измерение этого движения – нелегкая задача, но именно такие измерения служат нам для определения магнитуды и других характеристик землетрясений. Сейсмографы. Приборы, которые записывают движение грунта при землетрясениях, называются сейсмографами. Записи сейсмографов, называемые сейсмограммами, используются для определения местоположения и магнитуды землетрясений. Сейсмограмма показывает, как изменяется во времени смещение почвы. Пока нет землетрясения, на сейсмограмме чертится прямая линия, которую нарушают лишь небольшие подрагивания – отзвуки местных помех («шумы»). Та движущаяся составная часть сейсмографа, в которой непосредственно образуется сейсмограмма, называется сейсмометром. Обычно это маятник или груз, подвешенный на пружине. В сейсмометре установлен также механизм затухания, важный для точного воспроизведения движений. Движение сейсмографа преобразуется в сейсмограмму одним из следующих способов: перо оставляет чернильную линию на бумаге, надетый на вращающийся барабан; световой луч оставляет свой след на движущейся фотопленке; электромагнитная система генерирует ток, который с помощью электронного устройства записывается на магнитной ленте. Движение грунта в любой точке происходит в трех измерениях. Это значит, что точка движется в пространстве, а не просто в плоскости или по прямой. Чтобы полностью записать такое движение, каждый сейсмограф должен состоять из трех сейсмометров, движущихся в трех взаимно перпендикулярных направлениях (двух горизонтальных и одном вертикальном) и позволяющих получать соответствующие сейсмограммы. По трем движениям во взаимно перпендикулярных направлениях сейсмологи могут построить истинные движения грунта в пространстве. Определение координат очага землетрясения. Волны P, S распространяются с разной скоростью и приходят с разных сторон, поэтому они регистрируются станцией в разное время. В различных скальных породах скорости волн Р равны 3-8 км/с (11 000-29 000 км/ч), а волн S – 2-5 км/с (7 000-18 000 км/ч). Точное время прихода каждой волны определяется по отметкам времени, имеющимся на сейсмограмме. По времени прихода волн Р и S, зная скорости распространения этих волн, можно рассчитать расстояние от места установки приборов до гипоцентра землетрясения. После того, как для нескольких станций определены расстояния до гипоцентра, можно определить координаты гипоцентра и эпицентра. И только после этого можно приступать к определению магнитуды землетрясения по Рихтеру. Магнитуда Рихтера. Магнитуда – это мера полной энергии сейсмических волн. Разработанная Ч. Рихтером количественная шкала для оценки энергии очага (или интенсивности в очаге) землетрясения по своей идее сродни той, которая используется астрономами для градуировки звезд по шкале звездных величин, основанной на сравнительной яркости звезд при наблюдении через телескоп. Рихтер определил магнитуду как число, пропорциональное десятичному логарифму амплитуды (выраженной в микрометрах) наиболее сильной волны, записанной стандартным сейсмографом на расстоянии 100 км от эпицентра землетрясения. Поскольку шкала магнитуд логарифмическая, увеличение магнитуды на единицу означает десятикратное возрастание амплитуды колебаний волне (или смещения грунта). Амплитуды сейсмических волн у землетрясения с магнитудой 6,0 в 10 раз больше, чем у землетрясения с магнитудой 5,0, в 100 раз больше, чем у землетрясения с магнитудой 4,0 и в 1000 раз больше, чем у землетрясения с магнитудой 3,0. Нулевая магнитуда не означает, что землетрясения нет; поскольку ноль – это логарифм единицы, такое землетрясение записывается стандартным сейсмографом на расстоянии 100 км с амплитудой в 1 мкм. Землетрясение с магнитудой 0 и в самом деле очень слабое, совершенно неощутимое для людей, однако оно вполне может быть записано сейсмографом. Можно обнаружить и измерить даже еще более слабые землетрясения с магнитудами -1, -2, -3. Самое слабое из ощутимых землетрясений имеет магнитуду 1,5, а наименьшее землетрясение, способное причинить ущерб (хотя бы и минимальный), - около 4,5. В самой шкале верхний предел магнитуды не предусмотрен, так как это расчетная величина. По этой причине шкалу Рихтера часто называют «открытой» шкалой. В действительности же сама Земля создает практический верхний предел, подобно тому, как чувствительность аппарата создает нижний предел. Сильнейшее из когда-либо зарегистрированных землетрясений имели магнитуду 8,9. Акселерографы. Сейсмографы предназначены для записи малых перемещений грунта, вызываемых удаленными землетрясениями. Сейсмологи используют их для определения положения гипоцентров, оценки магнитуд и изучения механизма землетрясений. Инженеров, однако, интересует, как ведут себя конструкции, подвергающиеся воздействию сильных колебаний грунта при близких землетрясениях, т.е. тому виду сотрясений который приносит ущерб. Чтобы записать эти колебания грунта, требуется другой тип приборов, способный измерить не смещение почвы, а ее ускорение. Такие приборы называются акселерографами, а система из груза и подвеса внутри акселерографа – это акселерометр. Полученная запись, называемая акселерограммой, внешне похожа на сейсмограмму, но ее математические характеристики совсем иные. Акселерографы в отличие от сейсмографов не имеют системы непрерывной регистрации; вместо этого они включаются от самого землетрясения и имеют питание от батарей (поскольку при сильных землетрясениях электричество часто отключается). Акселерографы предназначены для измерения сильных местных землетрясений и не реагируют на удаленные землетрясения. Сейсмографы, напротив, достаточно чувствительны, чтобы обнаружить землетрясение, происшедшее в любом месте земного шара, однако их «зашкаливает», когда землетрясение происходит неподалеку. Интенсивность. Еще сотни лет назад люди пытались оценить величину землетрясения по размерам причиненного им ущерба. Если одно землетрясение разрушило больше зданий, чем другое, его можно считать более сильным. Хотя такой подход кажется естественным, он может привести к заблуждениям. Ведь объем разрушений очень сильно зависит от расстояния до гипоцентра и от местных факторов, например от качества построек и от свойств грунта. Сегодня мы называем степень ущерба в определенном месте интенсивностью землетрясения и измеряем ее в баллах с помощью специальной цифровой шкалы. Для каждого землетрясения существует лишь одна магнитуда по Рихтеру, однако это землетрясение может вызвать сотрясения различной интенсивности: от высокой в наиболее сильно пострадавших районах и до самой низкой, не связанной ни с каким ущербом, - вдали от эпицентра. Интенсивность не является непосредственно измеряемой величиной; ее определение полностью субъективно. Чтобы получить значение интенсивности, надо обследовать пострадавшие районы, осмотреть повреждения зданий, резервуаров, дорог, каналов, горных склонов и всего того, что могло испытать воздействие землетрясения. Интенсивность обозначается римскими цифрами, чтобы избежать путаницы с магнитудой и шкала ее содержит баллы от I до XII. Первоначальный вариант этой шкалы возник в 1902 г. Его предложил в Италии Джузеппе Меркалли. В нашей стране и ряде европейских стран для оценки интенсивности землетрясений используется 12-баллльная международная шкала MSK-64. Условно землетрясения подразделяются на слабые (I-IV балла), сильные (V-VII баллов) и сильнейшие (разрушительные – восемь баллов и более). Шкала Меркалли для оценки интенсивности землетрясений (MSK-64)
Примерное соотношение между магнитудой по Рихтеру и максимальной интенсивностью по шкале ММ
Разработали преподаватели М.В. Чекушкина Н.Ю. Соснина Обсуждена на методическом совещании КОУМЦ ГОЧС. |
Учебно-методический комплекс по дисциплине «Электронный бизнес» Методический комплекс включает учебную программу курса, планы проведения занятий, список основной и дополнительной рекомендуемой... |
Учебно-методический комплекс по дисциплине «Инструментальные средства в электронном бизнесе» Методический комплекс включает учебную программу курса, планы проведения занятий, список основной и дополнительной рекомендуемой... |
||
Учебно-методический комплекс по дисциплине «Инструментальные средства в электронном бизнесе» Методический комплекс включает учебную программу курса, планы проведения занятий, список основной и дополнительной рекомендуемой... |
Пояснительная записка Программа подготовки матросов-спасателей ведомственных... Председатель комитета по обеспечению безопасности жизнедеятельности населения Волгоградской области |
||
Учебно- методическое пособие для проведения занятий с работающим... Примерная программа обучения работающего населения Копейского городского округа в области безопасности жизнедеятельности |
Учебно-методический комплекс по дисциплине «Маркетинг» Учебно-методический комплекс предназначен для студентов очной формы обучения, содержит план лекционных и практических занятий, рекомендации... |
||
Учебно-методический комплекс по дисциплине «Маркетинг» Учебно-методический комплекс предназначен для студентов заочной формы обучения, содержит план лекционных и практических занятий,... |
Кафедра журналистики учебно-методический комплекс по курсу "организация работы пресс-службы" ... |
||
Учебно-методический комплекс по дисциплине «Языки и среды реализации web -приложений» Учебно-методический комплекс предназначен для студентов заочной формы обучения, содержит план лекционных и практических занятий,... |
Учебно-материальной базы для подготовки неработающего населения в... В рекомендациях определены общие подходы к созданию и развитию учебно-материальной базы, состав учебных объектов и средств обеспечения... |
||
Программа предназначена для организации работы по дополнительной... Раскрывает содержание тренировочной и воспитательной работы, приводятся планы распределения учебного материала по группам и разделам... |
Учебно-материальной базы Рязанской области для подготовки населения в области Рязанской области «Управление по делам го и чс г. Рязани» (далее курсы го), организациях, в том числе образовательных, а также в... |
||
Учебно материальной базы Рязанской области для подготовки населения в области Рязанской области «Управление по делам го и чс г. Рязани» (далее курсы го), организациях, в том числе образовательных, а также в... |
Положение о государственном бюджетном учреждении социального обслуживания... «Центр социальной адаптации лиц без определенного места жительства и занятий» и утверждении устава Государственного бюджетного учреждения... |
||
Учебно-материальной базы субъекта Российской Федерации для подготовки населения в области Рекомендации по составу и содержанию учебной материальной базы субъекта Российской Федерации для подготовки населения в области гражданской... |
Учебно-материальной базы субъекта Российской Федерации для подготовки населения в области Рекомендации по составу и содержанию учебной материальной базы субъекта Российской Федерации для подготовки населения в области гражданской... |
Поиск |