Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов


Скачать 3.3 Mb.
Название Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов
страница 3/21
Тип Документы
rykovodstvo.ru > Руководство эксплуатация > Документы
1   2   3   4   5   6   7   8   9   ...   21
Глава № 2. Автономные дыхательные аппараты.

Дыхательные аппараты, действующие независимо от подачи воздуха с поверхности (SCUBA), (Scuba - сокращенное от Self-Contained Underwater Breething Apparatus (автономный подводный дыхательный аппарат) делятся на три класса: кислородные, воздушные и комбинированные (воздушно-кислородные). Кроме того, в зависимости от способа обеспечения дыхания они относятся к двум основным типам: с открытым циклом дыхания (выдох в воду) и с замкнутым циклом.
Кислородные аппараты. Первыми появились кислородные аппараты, действующие по схеме замкну-

того цикла дыхания. В 30-ые и 40-ые годы их широко применяли для спасения личного состава с затонувших подводных лодок. Именно такими аппаратами пользовались во время Второй Мировой войны итальянские, английские, немецкие и другие пловцы-подводники. (Забавно, что лицензию на производство этих аппаратов итальянцы купили у англичан. Те даже представить себе не могли, каким образом их собственный прибор поможет врагам). Чистый кислород - тот самый газ, который жизненно необходим человеку. Работающие на нем аппараты имеют много достоинств, в том числе малые габариты и скрытность действия. На суше их легче носить, чем воздушные, в воде они не так мешают плыть. Но главное, они не оставляют на поверхности воды следа в виде пузырьков воздуха, что столь характерно для аквалангов. Эта особенность дает большие преимущества во время операций, требующих соблюдения особой секретности.

Устройство кислородного аппарата следующее. В двух-трех стальных баллончиках содержится кислород под давлением 150-200 атмосфер. Через редуктор, понижающий давление до заданного значения, кислород поступает по трубке вдоха в дыхательный мешок и оттуда в легкие пловца. А трубка выдоха соединена с небольшой камерой регенерации (прежде она наполнялась каустической содой, теперь содержит более сложный состав). Там поглощается почти вся двуокись углерода (углекислота), этот продукт сгорания потребляемого пловцом "топлива". Неиспользованный легкими кислород, остаток углекислоты и незначительное количество азота обогащаются в дыхательном мешке порцией свежего кислорода и снова подаются к загубнику. С первого взгляда кажется, что кислородный дыхательный аппарат почти идеален. Однако у него есть серьезный недостаток - ограничение допустимого погружения не более чем 20 метрами. Иначе довольно часто наступает отравление организма кислородом и потеря сознания. Во время войны такое неоднократно случалось с итальянскими подводными диверсантами, стремившимися действовать на предельных глубинах. Более того, в случае переохлаждения или переутомления кислородное отравление бывает и на сравнительно небольшой глубине. Поэтому рекомендуется использовать кислородные аппараты для плавания под водой не глубже 10 метров.

Воздушные аппараты. Воздушные аппараты известны под названием "акваланг" (водяные легкие). Первый акваланг создали в 1943 году французы Жак-Ив Кусто и Эмиль Ганьян. Акваланг состоит из одного, двух или трех баллонов с воздухом под давлением 150-200 атмосфер, легочного автомата, шлангов вдоха и выдоха, ремней крепления аппарата к телу человека. Наиболее употребительны баллоны емкостью 5 и 7 литров, но применяются также 10 - и даже 14-литровые. Важной характеристикой, определяющей пригодность баллонов к использованию, является отношение их веса в килограммах к внешнему объему в литрах. Оно не должно превышать единицы, в противном случае имеет место большая отрицательная плавучесть, затрудняющая плавание под водой и самостоятельный подъем пловца на поверхность. Работа акваланга основана на принципе пульсирующей подачи воздуха для дыхания (только на вдох) по открытой схеме, т.е. с выдохом в воду. При этом исключается перемешивание выдыхаемого воздуха с вдыхаемым или повторное его использование, как это происходит в аппаратах с замкнутым циклом.

Дыхание в акваланге осуществляется по следующей схеме: сжатый в баллонах воздух поступает в легкие через загубник из дыхательного автомата, а выдох производится непосредственно в воду. Воздух поочередно из каждого баллона идет через стопорные краны в металлический патрубок, соединенный с редукционным клапаном. К патрубку прикрепляется армированная резиновая трубка с манометром, находящимся на груди у пловца. Протянув руку назад и повернув стопорные краны, пловец может определить по манометру, сколько у него осталось воздуха. Манометр для пловца является тем же, чем является указатель уровня бензина для водителя автомобиля: он позволяет пловцу судить, сколько времени может он находиться под водой. Главная часть конструкции акваланга - дыхательный (легочный) автомат, с помощью которого воздух подается к дыхательным органам человека в необходимом количестве и под давлением, соответствующим давлению окружающей воды. Специальный клапан при вдохе перекрывает трубку выдоха, а при выдохе - трубку вдоха. Тем самым предотвращается потеря свежего воздуха и вдыхание использованного. В первых моделях акваланга трубка выдоха отсутствовала, пока Кусто не обнаружил, что аппарат, прекрасно работавший, когда пловец находился лицом вниз, отказывал, если он переворачивался на спину. Это объясняется тем, что давление воздуха в дыхательном клапане и в выпускном отверстии возле рта пловца было неодинаковым. Выход был найден в том, что посредством трубки выдоха выпускное отверстие передвинули к затылку пловца.

Дыхательные автоматы по своему устройству бывают одноступенчатыми и двухступенчатыми, без разделения ступеней редуцирования воздуха и с разделением. В настоящее время используются, в основном, двухступенчатые автоматы с разделенными ступенями редуцирования. Схема их действия такова:

Редуктор крепится непосредственно на баллоне со сжатым воздухом. Из него воздух по гибкому гладкому шлангу поступает в дыхательный автомат, который размещен возле рта пловца. Дыхательный автомат разделен мембраной на внутреннюю (подмембранную) и внешнюю (надмембранную) полости. В корпусе автомата размещен качающийся клапан вдоха со штоком, расположенный под углом к мембране. При вдохе во внутренней полости автомата создается разрежение. Под действием наружного давления, мембрана, прогибаясь во внутреннюю полость, давит тогда на шток клапана вдоха и перекашивает этот клапан относительно седла. Через образовавшийся зазор воздух поступает во внутреннюю полость автомата. После окончания вдоха давление во внутренней полости уравнивается с наружным давлением воды, мембрана возвращается в нейтральное положение и прекращает давить на шток клапана. Тогда под воздействием силы пружины 3 клапан садится на седло и прекращает доступ воздуха во внутреннюю полость автомата. Выдох производится через клапаны выдоха, размещенные в корпусе дыхательного автомата.

Отсутствие в данной конструкции длинных гофрированных шлангов (имевшихся в прежних моделях), минимальный путь воздуха от клапана вдоха к дыхательным органам, а также к клапану выдоха, сравнительно малый объем полости дыхательного автомата - все это дало возможность значительно снизить сопротивление дыханию. В СНГ к числу аквалангов такого типа относятся АВМ-3, АВМ-5, АВМ-6, АВМ7С, АСВ-2, ШАП-62, Украина-2 и ряд других. По сравнению с кислородными аппаратами, акваланги обладают целым рядом существенных преимуществ:

- они очень быстро приводятся в действие, достаточно открыть вентили баллонов и взять в рот загубник;

- надежны в эксплуатации и просты в обслуживании;

- безопасны как при зарядке, так и в работе;

- безопасны в применении на глубинах до 40 метров;

- использование сжатого воздуха исключает как кислородное отравление, так и кислородное голодание;

- открытая схема дыхания исключает отравление углекислым газом;

- отсутствие дыхательного мешка и легочно-автоматический принцип действия сводят к минимуму опасность возникновения баротравмы легких;

- опасность возникновения кессонной болезни также минимальна, поскольку ткани организма не успевают перенасытиться азотом.

Кроме того, акваланг позволяет человеку свободно плавать под водой, освобождая его от необходимости все время находиться в вертикальном положении или ходить по дну. Все эти достоинства аквалангов обусловили широчайшее применение их не только в военном деле, но и в подводном спорте, а также для самых разнообразных подводных работ. Их применяют спасатели, ремонтники, кинооператоры и фотографы, археологи, гидротехники, ихтиологи и многие другие.
Комбинированные аппараты. Тем не менее, боевые пловцы нуждались в еще более совершенных аппаратах, позволяющих находиться под водой значительно дольше, чем в акваланге и погружаться намного глубже 40 метров. Для удовлетворения их требований были созданы комбинированные, т.е. воздушно-кислородные дыхательные аппараты замкнутого цикла. В них с помощью регенеративной системы воздух (или газовая смесь) очищается от углекислоты и обогащается кислородом. При этом количество подаваемого кислорода меняется в зависимости от глубины и температурных условий. Так, в случае работы на большой глубине в холодной воде, когда пловец может получить кислородное отравление, он дышит одним только воздухом. А для ускорения процесса освобождения организма от азота на подъеме, пловец дышит сначала обогащенной кислородом смесью, затем чистым кислородом. Преимущества комбинированных воздушно-кислородных аппаратов перед предыдущими очевидны. Использование их дает возможность увеличить как общее время пребывания под водой (до 5-10 часов), так и рабочее время (за счет значительного сокращения длительности декомпрессионных остановок). Иначе говоря, подобные аппараты соединяют в себе достоинства и

воздушных, и кислородных приборов. Боевые пловцы в настоящее время используют в основном именно такие устройства. Среди лучших зарубежных образцов следует назвать немецкий ЛАРВ "Драгер", итальянский "АРО", французский "Оксижер-57", английские "Оксимагнум" и "Оксимакс". Все они одеваются на грудь, а не за спину, у всех баллоны для воздуха и кислорода изготовлены из легких немагнитных сплавов.

Для зарядки аппаратов воздухом нужен компрессор с электрическим или бензиновым мотором. В любой военно-морской базе и на любом военном корабле обязательно есть мощный компрессор, позволяющий нагнетать воздух сразу в несколько баллонов. Важно только следить за исправностью фильтров, предохраняющих от попадания в сжатый воздух выхлопных газов и пыли. Не представляет проблемы и получение кислорода. Более сложным делом является обеспечение гелиево-кислородной смесью, открывающей путь на глубины порядка 80-100 метров. Но и эта задача успешно решается в подразделениях боевых пловцов промышленно развитых государств.
Глава № 3. Снаряжение для подводного плавания.

Если не считать профессиональных ныряльщиков - ловцов губок, кораллов и жемчуга - настоящих пловцов всегда было мало. Люди, отдаленные предки которых вышли из воды много миллионов лет назад, давно перестали считать ее родным домом. У них нет ни жабер, ни плавников, под водой они почти ничего не видят. В море обычный человек столь же беспомощен, как рыба на суше. Поэтому для того, чтобы могли появиться подводные пловцы, пришлось искусственным путем исправлять "недостатки" эволюции. Это значит, решать проблемы дыхания и зрения на глубине, защиты от холода, удобного передвижения и другие. Так появилось снаряжение для подводного плавания. Различают два вида подобного снаряжения: основное и дополнительное. Основное снаряжение обеспечивает жизненные функции человека под водой. К нему относятся дыхательные аппараты, маски, дыхательные трубки, ласты, гидрокостюмы.

Дополнительное снаряжение служит для ориентировки под водой и обеспечения безопасности. В эту группу входят глубиномеры, подводные часы и компасы, водолазные ножи, лаги и др. Снаряжение подводного пловца должно быть безопасным и надежным в действии, удобным и простым в обслуживании. Определенное сочетание предметов основного подводного снаряжения составляет комплекты, которые разделяются на комплект № 1 и комплект № 2. Комплект № 1 - самое простое и распространенное снаряжение. Он состоит из маски, дыхательной трубки и ласт. С его помощью можно плавать по поверхности воды, наблюдая через маску подводный мир, и ненадолго нырять в глубину. Плавая по поверхности, человек дышит через трубку обычным атмосферным воздухом, а ныряя, рассчитывает лишь на запас воздуха в своих легких, сделанный во время вдоха на поверхности. Комплект № 2 служит для продолжительного пребывания и плавания под водой. В него входят: маска, ласты и дыхательный аппарат - акваланг. При погружении в холодную воду (ниже +17°С) в комплекты как № 1, так и № 2 включается гидрокостюм, защищающий тело пловца от переохлаждения.
Основное снаряжение. Маска состоит из корпуса упругой резины с тонкими эластичными краями и вделанным в него смотровым стеклом овальной, круглой или другой формы и ремешка, удерживающего ее на голове пловца. Маска дает возможность хорошо и отчетливо видеть под водой, предохраняя глаза от вредного воздействия морской воды. Кто пробовал открывать глаза в воде, тот знает, что даже при хорошей прозрачности очертания всех предметов расплывчаты, как в тумане. Это потому, что коэффициент преломления воды близок к коэффициенту преломления самого глаза, который, соприкасаясь непосредственно с водной средой, не в состоянии преломить световые лучи так, чтобы изображение предмета попадало на сетчатку. Фокус изображения в этом случае оказывается за сетчаткой и человек видит все так, как если бы он страдал дальнозоркостью. Глаз, защищенный маской, непосредственно с водой не соприкасается. Он находится в воздушной среде подмасочного пространства, как в привычных естественных условиях. Световые лучи, отраженные предметом под водой, попадают в глаз через воздушную прослойку и изображение получается четким. Маска должна плотно прилегать к лицу и обеспечивать водонепроницаемость, достаточно широкое поле обзора, небольшое сопротивление при движении под водой. Существуют маски самых разнообразных конструкций: одни закрывают глаза, нос и рот (собственно маска), другие - только глаза и нос (полумаска).

В некоторых конструкциях масок имеются оригинальные детали, облегчающие "продувание" ушей и освобождение подмасочного пространства от попавшей в него воды. Дыхательная трубка - обеспечивает дыхание пловцу во время плавания у поверхности воды с погруженным в воду лицом. Бывает различной формы из сплава легких металлов или пластмассы. Нижняя часть трубки оканчивается прямым или боковым загубником, верхняя часть открытая. Имеются трубки, верхний конец которых оканчивается поплавковым клапаном, препятствующим попаданию воды в трубку при погружении в воду. Длина трубки 300-350 мм, внутренний диаметр 18-20 мм. Самодельные дыхательные трубки не должны быть длиннее или шире указанного размера. Нарушение этого условия приводит к излишнему сопротивлению при дыхании. Вес трубки обычно находится в пределах 200-300 грамм. В средней части трубка крепится к маске небольшим резиновым кольцом, либо ремешком. Во время плавания под водой с аппаратом дыхательная трубка является необходимой принадлежностью, так как иногда решает вопрос жизни. Если в баллонах кончится воздух, пловец может всплыть и возвратиться к берегу (кораблю), дыша через трубку. Ласты - резиновые плавники, надеваются на ноги для увеличения скорости плавания.

Руки пловца вполне могут сойти за рыбьи плавники. Ноги же его напоминают скорее весла без лопастей. Леонардо да Винчи, этот универсальный гений, который занимался даже конструированием летательных аппаратов, давно заметил это; недаром на его эскизах можно увидеть перчатки в виде плавников и ласты, очевидно, изготовлявшиеся из кожи. Однако прошло пять веков, прежде чем ласты, правда, сделанные из резины вошли во всеобщее употребление. Боевому пловцу они так же необходимы, как сапоги - солдату. Впервые ласты были применены в 1936 г. французом Корлье, а широкое использование получили в 40-х годах как снаряжение "людей-лягушек" в отрядах морских диверсантов Италии, затем Англии и Германии. Благодаря ластам боевой пловец получил возможность держаться на воде, так что у него освободились руки; он мог держать в них оружие и орудовать им, мог держать поплавок и прочие орудия своего ремесла, мог делать записи на пластмассовой табличке, ставить буйки или закреплять заряды взрывчатки.

Боевые пловцы используют ласты двух видов. Во первых, выполненные в виде туфель черные резиновые ласты, в которые вся ступня помещается целиком. Лопасть у них изогнута, чтобы уменьшить давление на пятки. У ласт другого типа, более распространенного, имеется пяточный ремешок. Такие ласты удобнее, их можно использовать для разных нужд. Например, если нужно подняться по стальному трапу в шлюзовую камеру, их можно связать ремешками и нести, перекинув через руку. Их также можно надеть поверх "коралловых башмаков", если понадобится идти вброд. По степени эластичности они разделяются на мягкие и жесткие, по весу - на легкие и тяжелые (от 0,5 кг до 2-х кг). В длительном плавании на большие расстояния лучше пользоваться мягкими и легкими ластами, а жесткими и тяжелыми - в скоростном плавании на коротких дистанциях. Эффективность ласт зависит не только от эластичности, но и от их формы. Скорость передвижения находится в зависимости от площади рабочих лопастей ласт и от соотношения их длины и ширины. Усилие пловца эффективнее, когда рабочая лопасть при вытянутых ногах почти параллельна оси тела и отогнута к оси ступни. Наиболее целесообразен угол отгиба величина которого находится в пределах 20-28°. В выборе ласт имеет значение также и субъективный фактор: каждый привыкает к одному определенному типу, отрабатывая свой стиль и приемы плавания.

Гидрокостюмы. В воде, обладающей большой теплоемкостью и теплопроводностью, человеческое тело отдает тепло значительно интенсивнее, чем на воздухе. Поэтому, чтобы избежать переохлаждения, погружаться под воду при температуре ниже 17°С рекомендуется в специальной теплозащитной одежде. Существует два вида такой одежды: гидрокомбинезон и гидрокостюм. В гидрокомбинезоне штаны и куртка сделаны из резиновой ткани и соединены в одно целое. Предназначен он главным образом для различного рода работ под водой, производимых легководолазами. Гидрокостюм состоит из облегающих штанов и куртки, выполненных раздельно из резины на трикотажной основе или из губчатой резины. Предназначен для подводных пловцов, так как позволяет плавать под водой. Различают гидрокостюмы "мокрые" и "сухие". "Сухой" костюм полностью изолирует тело и обеспечивает длительное пребывание в холодной воде. В зимнее время под него обычно надевают шерстяное белье. В качестве примера "сухих" гидрокостюмов, широко использовавшихся бывшим советским ВМФ, можно привести "Садко-1" и "Садко-2" из водогазонепроницаемой ткани на трикотажной основе с эластичными вставками.

Гидрокостюм "Садко-1" состоит из куртки, брюк, пятипалых перчаток, двух соединительных колец и пояса. Шлем с открытой лицевой частью из эластичной резины, с лепестковым клапаном. Поясная часть куртки заканчивается эластичной удлиненной манжетой, служащей для соединения с брюками. Брюки сделаны вместе с мягкими чулками, в верхней части имеют эластичную манжету. Куртка и брюки герметизируются манжетами путем их закатки, после чего сверху надевается резиновый пояс. Перчатки съемные, герметизируются упругими резиновыми кольцами. Масса гидрокостюма - 4,2 кг. Гидрокостюм "Садко-2" в отличие от "Садко-1" имеет шлем с общим смотровым стеклом и шейным разъемом. Он, как и перчатки, герметизируется упругим резиновым кольцом. Шлем имеет загубник со штуцером и накидной гайкой для присоединения дыхательного аппарата. Для стравливания воздуха из подшлемного пространства предусмотрен лепестковый клапан. Масса гидрокостюма - 6 кг. Гидрокостюмы "мокрого" типа изготовляют из ячеистой резины толщиной от 3 до 5 мм, обладающей достаточной прочностью и эластичностью, легко облегающей тело. Могут быть с подкладкой из синтетического трикотажа (эластика) и без нее.

Современный "мокрый" костюм состоит из двух частей: куртки с капюшоном, тесно облегающей тело и надеваемой навыпуск поверх резиновых штанов. Штаны изготовляются из черной резины и обтягивают ноги наподобие трико танцовщика. Этот черный резиновый костюм с капюшоном, из-под которого виднеется обветренное лицо боевого пловца, в тот момент, когда он выходит из моря, производит весьма зловещее впечатление: пловец смахивает в нем на марсианина. Губчатая резина не мешает проникновению воды к телу водолаза, но препятствует дальнейшей ее циркуляции и, следовательно, теплообмену с внешней средой. Позволяет избежать переохлаждения при температуре воды до - 10°С. В советском ВМФ использовались "мокрые" гидрокостюмы типов "Дельфин" и "Нептун" черного цвета. В зарубежных флотах нередко употребляют гидрокостюмы зеленого цвета, а также с камуфляжными пятнами.

Спасательный жилет. Обычно на пловце поверх гидрокостюма надет небольшой надувной жилет. В случае необходимости можно быстро надуть его с помощью патрона с углекислым газом или же с помощью своих легких. Он меньше тех, какие применяют для спасения пассажиров на воздушных лайнерах, и ничуть не мешает плыть. Если пловец тяжело ранен, его напарник надует ему жилет и отбуксирует товарища в безопасное место. Жилет этот спас немало человеческих жизней. Грузовой ремень - важная принадлежность снаряжения, помогающая уравновешивать плавучесть при погружениях. Он изготовляется из капроновой ленты, снабжен быстроразъемным замком и чугунными или свинцовыми грузами массой по 0,5-1 кг. На ремень можно надеть до 10-14 грузов. Число грузов подбирается каждым человеком индивидуально. Но излишняя положительная плавучесть должна погашаться таким образом, чтобы находиться в воде в состоянии безразличного равновесия или иметь небольшую отрицательную плавучесть. Очень важная деталь пояса - застежка. Она должна быть надежной, но вместе с тем просто и легко отстегиваться, позволяя в случае необходимости быстро освободиться от груза. Это является важным требованием техники безопасности.
Дополнительное снаряжение. Умение ориентироваться под водой - одно из важнейших качеств, которым должен обладать пловец-подводник. В этом ему помогает целый ряд приборов, составляющих дополнительное снаряжение. Подводные часы позволяют контролировать время пребывания под водой, что особенно важно при длительном нахождении на глубине более 12,5 и

(порог кессонной болезни). Промышленностью выпускаются несколько типов специальных водолазных часов в водонепроницаемом корпусе. Например, советские (российские) часы НВЧ-30 имеют механизм наручных часов с центральной секундной стрелкой. Часовой механизм заключен в водонепроницаемый корпус, рассчитанный на глубину погружения до 300 метров. Часовая, минутная и секундная стрелки, а также пятиминутные деления шкалы имеют знаки из светосостава постоянного свечения. Часы имеют поворотный лимб (поворотное кольцо со шкалой), который позволяет отсчитывать время пребывания водолаза под водой. Продолжительность хода часов при одной полной заводке пружины от 40 до 45 часов, габариты - 38х42х12,3 мм; масса - 0,45 кг. Наручные водолазные глубиномеры предназначены для определения глубины погружения в автономном снаряжении. Наиболее удобны и точны механические глубиномеры. Одним из таких является глубиномер УГ, который представляет собой манометр, помещенный в герметичный корпус со шкалой, отградуированной в метрах водного столба. В качестве чувствительного элемента используется трубчатая пружина, открытый конец которой припаян к отверстию в корпусе прибора, сообщающегося с водой. Другой конец трубки запаян. Вода через отверстие в корпусе поступает в трубку и заставляет ее распрямляться. К свободному концу ее при помощи передаточного механизма присоединена стрелка, показывающая на циферблате глубину. Пределы измерения от 0 до 25 метров водного столба; габариты 68х60х28 мм; масса 0,22 кг.

Другой вид глубиномера - типа Г-5, имеющий водонепроницаемый корпус, дно которого заменено гибкой металлической мембраной, являющейся чувствительным элементом. Гофрированная мембрана под влиянием разности внешнего давления и давления внутри корпуса прогибается. Движение центра мембраны при изменении внешнего давления с помощью передаточного механизма передается стрелке. Пределы измерения от 0 до 50 метров вод. ст., допустимая погрешность показаний при температуре окружающей среды 20+5°С не превышает +2,5% от верхнего предела измерения. Габариты 50х50х22 мм, масса 0,122 кг. Подводный компас позволяет ориентироваться при передвижениях по заданному курсу, а также определять направления на всякие видимые предметы. Имеются различные модели подводных компасов, но, как правило, все они основаны на свойстве магнитной стрелки, свободно вращающейся на вертикальной оси, устанавливаться в плоскости магнитного меридиана. Наручный магнитный компас КНМ состоит из неподвижного основания и поворотного корпуса (картушки). Полость, образуемая корпусом и скрепленной с ним крышкой, заполнена 50%-ным раствором этиленгликоля или 54%-ным раствором этилового спирта, служащим для уменьшения давления картушки, уменьшения трения шпильки, а также погашения ее колебаний.

В центре дна корпуса установлена колонка с пяткой, служащая опорой для шпильки картушки компаса. Картушка имеет магнитную систему из двух магнитных стрелок. На крышке поплавка картушки расположена стрелка, покрытая светящимся составом, которая показывает направление магнитного меридиана. Сверху на крышке корпуса параллельно линии 0 - 180° нанесены две курсовые стрелки также покрытые светящимся составом и установлены два визира: предметный и глазной. На внешней боковой поверхности корпуса компаса находится шкала с ценой деления 10 градусов, и цифры через каждые 30 градусов. Цифры покрыты светящимся составом.

Шкала корпуса защищена от повреждений наружным прозрачным кожухом с предметным и двумя глазными визирами конической формы на поверхности. Для пеленгования в темное время визиры заполнены светящимся составом. Между неподвижным основанием и дном корпуса компаса находится фрикционное устройство, выполненное в виде дисковой пружины, предотвращающее случайные повороты вращающейся части корпуса. Для установки компаса в горизонтальное положение в центре крышки корпуса имеется окружность, которая служит указателем уровня. Вторым эле-

ментом уровня является воздушный пузырь в жидкости, заполняющей компас. Корпус компаса легко поворачивается в основании так, что любое деление шкалы может быть совмещено с индексом. Такое совмещение делается для того, чтобы пловцу не надо было запоминать заданное направление движения под водой.

При движении по компасу под водой по заданному курсу соответствующее ему деление на корпусе совмещается с индексом на основании. Направление движения определяется по индексу на основании компаса после установления его в горизонтальное положение и вращения в горизонтальной плоскости до расположения стрелки картушки параллельно стрелкам корпуса. Компас закрепляется на руке ремнем с пряжкой. Корпус прибора рассчитан на глубину до 50 метров. Габариты - 50х50х40 мм; масса - 0,25 кг. Контрольный манометр предназначен для контроля за давлением воздуха в баллонах дыхательных аппаратов. Диаметр корпуса 60 мм. Присоединительный размер резьбы М12х1,5. Верхний предел измерения до 400 кг/см2. Имеет переходный штуцер с резьбой под зарядный штуцер аппарата. Масса 0,25 кг. Фонари применяются при погружениях ночью и в условиях недостаточной видимости. Они могут получать питание с поверхности или быть автономными. Последнее осуществляется от батареи, заключенной в водонепроницаемый корпус фонаря. Ко всем подводным фонарям предъявляются общие требования - герметичность и механическая прочность, соответствующие гидростатическому давлению на предельной глубине.

Ручной подводный фонарь РПФ предназначен для местного освещения под водой на глубинах до 30 метров. Он состоит из латунной рукоятки с крышкой и рефлектора, к торцу которого с помощью зажимной обоймы и двух прокладок герметично прикреплено защитное стекло. Кнопочный выключатель фонаря расположен на корпусе рефлектора и может стопориться гайкой на подачу постоянного пучка света без нажатия на выключатель. Фонарь работает от двух стандартных сухих цилиндрических гальванических элементов типа "Сатурн", обеспечивающих его непрерывную работу в течение 1 часа. Лампочка накаливания используется типа МН-3 на 2,5 Вольта, 0,14 Ампер. Максимальная сила света фонаря - не менее 100 свечей, масса - 0,8 кг, длина - 207 мм. На днище корпуса имеется кольцо для крепления фонаря к поясу. Акваплан. Компас, часы (или секундомер), глубиномер, лаг и другие приборы нередко монтируют на специальном приспособлении - акваплане. Последний изготовляется из листового дюралюминия, плексигласа или другого немагнитного материала и представляет собой конструкцию обычно коробчатого сечения для монтажа приборов. Приборы следует располагать на акваплане как можно более компактно и симметрично. Вертушку размещают таким образом, чтобы на нее не действовали возмущающие потоки от стабилизирующих плоскостей акваплана. Весь блок не должен иметь ни одной детали из магнитного материала. Плавучесть акваплана с приборами необходимо приблизить к нулевой.

Имея такое устройство, пловец может ориентироваться под водой по направлению, пройденному расстоянию, глубине погружения и времени пребывания под водой. В этой связи надо пояснить, что такое лаг. Лаг измеряет пройденное расстояние. Главной его частью является специальная вертушка, вращающаяся от скоростного напора воды при передвижении пловца. Вращательное движение с вертушки при помощи передаточного механизма (червячная или зубчатая пара) передается на счетчик, указывающий пройденное расстояние либо в метрах, либо в условных делениях шкалы, соответствующих определенному числу линейных единиц. Применяются и гидродинамические лаги, где вместо вертушки используется трубка напора воды (трубка Пито). Портативный гидролокатор. Принцип его действия тот же, что и корабельных гидролокаторов, применяемых для поиска подводных лодок и определения глубин. Портативный гидролокатор нетрудно нести под водой одному человеку. Прибор этот похож на большую автомобильную фару с компасом, укрепленным наверху. Радиус действия его в настоящее время - до 500 метров.

От корабельного гидролокатора он отличается тем, что излучаемый им импульс слабее. Для обнаружения препятствия гидролокатор нужно поворачивать до тех пор, пока оператор не услышит в наушниках отраженный звук. Направление, с которого звук доносится с наибольшей интенсивностью, и есть направление на предмет. Компас, установленный на локаторе, покажет пеленг, и тогда оператор может плыть прямо к обнаруженному объекту. При использовании гидролокатора для наводки отряда пловцов, двигающегося под водой, все действия производятся в обратном порядке. Командир посылает вперед одного из бойцов, установив гидролокатор по пеленгу, равному выбранному им курсу. Поддерживая с командиром световую или звуковую связь, боец, следуя его указаниям, двигается в нужном направлении, все время находясь точно в плоскости луча гидролокатора, и останавливается на максимально возможном расстоянии от командира. Затем командир движется сам сквозь тьму. При этом он руководствуется интенсивностью сигнала, отраженного от живого ориентира, который выполняет роль разыскиваемого предмета или подводного заграждения. Повторяя эту процедуру вновь и вновь, командир выводит свою группу в заданное место.

Средства связи и наблюдения. Связь между собой боевые пловцы осуществляют с помощью приборов звукоподводной связи. Например, французский прибор ERUS-2 имеет дальность действия до 100 метров на глубине 20 метров. Связь с кораблем обеспечения или с летательным аппаратом, со штабом операции пловцы поддерживают через миниатюрные радиостанции, внешним видом и размером похожие на калькуляторы. Их корпус герметизирован, прием и передача сообщений производятся методом "бегущей строки" или цифрового кода, высвечивающегося на экране. Радиостанция работает под водой, при условии, что ее антенна хотя бы на 30-40 сантиметров выступает над поверхностью моря. К числу средств наблюдения относятся приборы ночного видения второго и третьего поколения (т.е. бесподсветочные), выполненные на микроканальных усилителях яркости изображения. Их масса не превышает трех килограммов, а технические особенности таковы, что позволяют использовать в трех режимах: над водой, под водой, из-под воды. В качестве примера можно назвать английский "Акваскоп Мк-2а". Еще один прибор наблюдения, это дальномерноугломерный комплекс. Он состоит из лазерного дальномера, электронного устройства для определения углов и мини-компьютера. Данный комплекс обычно монтируется на акваплане вместе с другими приборами (часами, компасом и т.д.).
1   2   3   4   5   6   7   8   9   ...   21

Похожие:

Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon Соискупитель
Дзыньк! Механизм внезапно разладился, овечки налетели одна на другую. Динь-дон! Динь-дон! Динь-дон! – часы стали отбивать полночь....
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon Содержание
Средства индивидуальной защиты (сиз) предназначены для сохранения способности выполнения личным составом органов внутренних дел служебно-боевых...
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon Отдела боевых алгоритмов и программ
В 77 Воспоминания военных программистов отдела боевых алгоритмов и программ рлс до «Дунай-3» системы про а-35. М.: Издательство «Перо»,...
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon История российской полиции
Многие сотрудники милиции за участие в боевых операциях Великой Отечественной войны удостоены звания Героя Советского Союза, орденов...
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon Оао «Корпорация «Тактическое ракетное вооружение»
Оао «Корпорация «Тактическое ракетное вооружение», именуемое в дальнейшем «Заказчик», в лице генерального директора Обносова Бориса...
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon Оао «Корпорация «Тактическое ракетное вооружение»
Оао «Корпорация «Тактическое ракетное вооружение», именуемое в дальнейшем «Заказчик», в лице генерального директора Обносова Бориса...
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon Подготовка данного перечня была обусловлена повышением интереса к...
Приморья, а также к деятельности структур, которые осуществляли не только контроль и наблюдение за исполнением законодательных актов,...
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon Правила вида спорта «подводный спорт» Подводный спорт культивирует...
Плавание в ластах движение спортсмена по поверхности воды или под водой, вызываемое только его мускульной силой и ластами без применения...
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon Образовательная программа бакалавриата «История»
Пополнение личного состава железной дороги и подготовка квалифицированных рабочих
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon Г. В. Губарев Редактор- издатель
Абрамов григорий Иванович (дон.) рожд. 1893 г., ст. Урюпинской; есаул; участник Первой Мировой войны, борьбы за Дон в г г. 1918 20...
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon Hdc ht2 предоперационная инструкция / pre operative instructions
Предварительная подготовка к трансплантации волос, играет существенную роль в обеспечении отличных результатов операции. Ваше сотрудничество...
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon Пояснительная записка (радиоспорт и радиолюбитель) Целью курса является...
Целью курса является вооружение слушателей «Малой технической академии» знаниями теоретических основ, практических умений по направлениям...
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon Специальность, по которой осуществляется руководство аспирантами
...
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon Тематическое планирование Предмет история Класс
Дмитриева О. В. Всеобщая история. История Нового времени. Конец XV-XVIII век. Учебник для 7 класса. 5 издание М.: «Тид «Русское слово-рс»-...
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon 07-15-2009 (5060232) Комбайн самоходный зерноуборочный Дон-1500
Комбайн зерноуборочный самоходный Дон-1500 (капитально отремонтированный). Жатвенная часть жу-6
Миллер Дон. Подводный спецназ; История; Операции; Снаряжения вооружение, подготовка боевых пловцов icon Руководство по эксплуатации pocc ru. Мм05. Н05485
Автоматизированная проходная «Ростов-Дон Т83М1 step10 штрихкод» реализована на базе серийного турникета «Ростов-Дон Т83М1». В турникет...

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск