Скачать 1.37 Mb.
|
Предварительная выборка команд и предсказание переходовПоскольку при суперскалярной обработке необходимо извлекать из памяти несколько команд за один такт для загрузки параллельно работающих функциональных модулей, повышенные требования предъявляются к пропускной способности интерфейса микропроцессор-память. В современных микропроцессорах применяются многоуровневые раздельные кэш-памяти данных и команд. Для уменьшения потерь процессорных циклов, связанных с промахами при обращении к кэш-памяти в случае выполнения команд ветвления, в состав системы кэширования введены средства предсказания переходов, основное назначение которых - повысить вероятность наличия в кэш-памяти требуемой команды. Исполнение условных ветвлений состоит из следующих этапов: • распознание команды условного ветвления; • проверка выполнения условия перехода; • вычисление адреса перехода; • передача управления, в случае перехода. На каждом этапе используются специальные приемы повышения производительности. 1. Для быстрого декодирования используются либо дополнительные биты в поле команды, либо преддекодирование команд при выборе из кэш-памяти команд. 2. Часто, когда команда уже выбрана в кэш, условие перехода еще не вычислено. Чтобы не задерживать поток команд в данном случае используется предсказание перехода по одной из нескольких возможных схем. Некоторые предсказатели используют статическую информацию из двоичного кода программы или специально выработанную компилятором. Например, определенные коды операций чаще вырабатывают ветвление, чем другие коды, или ветвление более вероятно (при организации циклов), или компилятор может устанавливать флаг, указывающий направления перехода. Может также использоваться статистическая информация, полученная при трассировке программы. Другие предсказатели используют динамически формируемую информацию в процессе исполнения программы. Обычно это информация, касающаяся истории выполнения данного ветвления, сохраняемая в таблице ветвлений или в таблице предсказаний ветвлений. Таблица предсказания ветвлений организуется по ассоциативному принципу, подобно кэш-памяти, ее элементы доступны по адресу команды, ветвление которой предсказывается. В некоторых реализациях элемент таблицы предсказания ветвления является счетчиком, значение которого увеличивается при правильном предсказании и уменьшается при неправильном. При этом значение счетчика определяет преобладающее направление ветвлений. В момент определения действительного значения условия ветвления, вносится изменение в историю ветвления. Если предсказание было неверным, то должна инициироваться выборка правильных команд. Результаты команд, которые были условно выполнены, должны быть аннулированы. 3. Для определения адреса ветвления обычно требуется выполнить целочисленное сложение, прибавляющее к текущему значению счетчика команд смещение, заданное в поле команды ветвления. И хотя это не требует дополнительных циклов для обращения к регистрам, ускорение вычисления адреса может быть достигнуто благодаря использованию буфера, содержащего ранее использованные адреса переходов. Если требуется осуществить смену значения счетчика команд, то необходим, по крайней мере, один такт для распознания команды ветвления, модификации счетчика команд и выборки команды по заданному значению счетчика команд. Эти задержки вызывают пустые такты в конвейерах процессора. Более сложные решения используют буферы, содержащие наборы команд для двух возможных результатов ветвлений. Возможно также использование "отложенных переходов", когда одна или несколько команд после команды ветвления выполняются безусловно. Декодирование команд, переименование ресурсов и диспетчеризацияНа этой фазе определяются существенные зависимости (RAW) по данным между командами и преодолеваются несущественные (WAW, WAR), производится распределение команд по буферам команд функциональных устройств. При декодировании команды создается одна или несколько упорядоченных троек, каждая из которых включает: 1) исполняемую операцию, 2) указатели на операнды, 3) указатель на место помещения результата. Для преодоления лишних WAR и WAW зависимостей, возникающих в результате ограниченности логических ресурсов (ячеек памяти, регистров), используется механизм динамического отображения определяемых текстом программы логических ресурсов на физические ресурсы микропроцессора. При данном подходе с одним логическим ресурсом может быть связано несколько значений в различных физических ресурсах, каждое из которых соответствует значению логической величины в один из моментов времени последовательного выполнения программы. Когда команда создает новое значение для логического регистра, физический ресурс, в который помещается это значение, получает имя. Последующие команды, использующие это значение, снабжаются именем физического ресурса. Данная процедура называется переименованием регистров. Используются два основных способа переименования. В первом, физический файл регистров больше логического. При необходимости переименования из списка свободных физических регистров берется один и ему сопоставляется соответствующее логическое имя. Если список свободных регистров пуст, диспетчеризация команд приостанавливается до момента появления свободных физических регистров. Рассмотрим пример реализации данного способа переименования. Пусть требуется выполнить команду sub r3, г3, 5 (из значения регистра г3 вычесть константу 5 и поместить результат в регистр r3). Логические имена регистров начинаются со строчной буквы, а физические — с прописной. Пусть также в момент исполнения команды в таблице регистру r3 соответствует R1. Первым регистром в списке свободных пусть является R2. Поэтому в поле результата команды sub r3, r3, 5 регистр r3 заменяется на R2. Исполнимая команда приобретает вид sub R2, R1, 5. Любая следующая за sub команда, использующая ее результат, должна использовать в качестве операнда R2. Остается вопрос о возвращении физических регистров в список свободных после того, как из них считаны данные в последний раз. Один из способов связывает счетчик с каждым физическим регистром. Счетчик увеличивается при каждом переименовании операнда в командах, использующих этот физический регистр. Соответственно при использовании операнда значения счетчика уменьшается на 1. При достижении счетчиком нуля физический ресурс должен быть переведен в список свободных. Второй способ переименования использует одинаковое число логических и физических регистров и поддерживает их однозначное соответствие. В дополнение имеется буфер с одним вхождением для каждой инициированной на исполнение команды. Этот буфер называется переупорядочивающим, так как он используется также для установления порядка команд при прерываниях. Данный буфер можно рассматривать как FIFO очередь, выполненную в виде кольцевого буфера с указателями "начало" и "конец". Команды помещаются в конец буфера. По завершению команды ее результат заносится в заранее предписанный ей элемент очереди, независимо от места в очереди, занимаемого этим элементом. К моменту достижения командой начала буфера, если она была исполнена, ее результат помещается в регистровый файл, а сама команда удаляется. Команда, находящаяся в буфере и не исполненная в виду отсутствия значения операнда, остается в нем вплоть до получения этого значения. Одновременно может выбираться из очереди или помещаться в нее несколько команд, однако всегда соблюдается дисциплина FIFO. Значение логического регистра может быть размещено либо в физическом регистре, либо в переупорядочивающем буфере. В момент декодирования команды значению ее результата сопоставляется соответствующая результату позиция упорядоченной тройки команды в элементе переупорядочивающего буфера, в котором размещается рассматриваемая декодированная команда, и делается отметка в таблице соответствия значений, которая указывает, что значение результата может быть найдено в соответствующем элементе буфера. Поля источников и результата команды используются для доступа к полям таблицы. Таблица показывает, что соответствующий регистр содержит требуемую величину либо она может быть найдена в переупорядочивающем буфере. Когда переупорядочивающий буфер полон, диспетчеризация команд приостанавливается. Рассмотрим выполнение переименования на примере команды sub r3,r3,5. Пусть значение г3 находится или будет находиться в переупорядочивающем буфере в элементе 6. Регистр г3 как источник заменяется на соответствующее поле результата элемента 6 буфера. Команда sub помещается в конец переупорядочивающего буфера, например, в элемент 7. Этот номер затем записывается в таблицу для использования командами-потребителями результата. Следует заметить, что переупорядочивающий буфер фактически вводит потоковую модель вычислений по готовности операндов. Независимо от способа переименования в суперскалярном процессоре устраняются лишние зависимости по данным. |
Конспект лекций Ш 39 Метрология, стандартизация, сертификация: Конспект лекций / О. А. Шейфель; Кемеровский технологический институт пищевой промышленности.... |
Конспект лекций для студентов всех форм обучения специальности 080110... Налоги и налогообложение: Конспект лекций / Составитель Н. А. Леончик. – Кемерово, 2006. – 80 с |
||
Технические средства автоматизации конспект лекций Конспект лекций предназначен для студентов дневной, вечерней, заочной и дистанционной форм обучения по специальности 220301 «Автоматизация... |
Конспект лекций Владимир 2010 Министерство образования Российской... Автоматизированные системы бухгалтерского и управленческого учета. Часть 1: Конспект лекций / Владим гос ун-т; Сост.: Д. Н. Васильев... |
||
Конспект лекций лаконично раскрывает содержание и структуру учебной... Безопасность жизнедеятельности : конспект лекций для студентов очной и заочной форм обучения / сост. В. М. Домашко; Южный федеральный... |
Конспект лекций по дисциплине для специальности 080101. 65 «Экономическая безопасность» Информационные системы в экономике: конспект лекций по дисциплине для обучающихся по специальности 080101. 65 «Экономическая безопасность»... |
||
Конспект лекций по дисциплине «Научные основы производства продуктов питания» Конспект лекций по дисциплине «Научные основы производства продуктов питания» для студентов кафедры «Технология и организация общественного... |
Конспект лекций по дисциплине вгипу, 2009 Конспект лекций по дисциплине... Учебное пособие предназначено для студентов различных специальностей, изучающих дисциплину “Автоматизированные системы управления... |
||
Кафедра фармации Органические лекарственные препараты. Ароматические... Органические лекарственные препараты. Ароматические соединения. Краткий конспект лекций – Нижний Новгород: Изд-во Нижегородской государственной... |
Конспект-лекций основы социальной работы 44. 05. 01 «Педагогика и... Мельников С. В. Основы социальной работы: Конспект-лекций по специальности 44. 05. 01 «Педагогика и психология девиантного поведения»... |
||
Конспект лекций по курсу «Делопроизводство» составлен на основе базовой... Конспект лекций по курсу «Делопроизводство» составлен на основе базовой программы «Делопроизводство и документационное обеспечение... |
Конспект лекций (Гилевский Ю. Х.) по высшей геодезии за 3 курс обучения... Конспект лекций (Гилевский Ю. Х.) по высшей геодезии за 3 курс обучения в Санкт-Петербургском техникуме Геодезии и картографии. Примерно... |
||
Конспект лекций по учебной дисциплине защита информации Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования |
Конспект лекций учебной дисциплины: «Производственный менеджмент» Тема Методы сетевого планирования и управления в подготовке производства продукта |
||
Конспект лекций мдк 02. 02. Электронные средства и методы геодезических измерений ПМ. 02. Выполнение топографических съемок, графического и цифрового оформления их результатов |
Конспект лекций по дисциплине «экономика татарстана» Принята на заседании кафедры экономико-математического моделирования Института управления, экономики и финансов |
Поиск |