Руководство по контролю источников загрязнения


Скачать 3.28 Mb.
Название Руководство по контролю источников загрязнения
страница 7/23
Тип Руководство
rykovodstvo.ru > Руководство ремонт > Руководство
1   2   3   4   5   6   7   8   9   10   ...   23

Технические характеристики отечественных фотометрических приборов

Тип прибора

Диапазон длин волн, им

Погрешность измерения, %

Размеры прибора, мм

Масса, кг

Колориметры-нефелометры

 

 

 

 

Фотоэлектрический

 

 

 

 

ФЭК-56М

315 - 630

1,0

382´270´187

10,5

ФЭК-60

360 - 1060

1,0

400´385´235

22,5

Спектрофотометры

 

 

 

 

СФ-8

200 - 2500

1,0

1500´910´1170

480

СФ-18

400 - 750

0,5

1100´959´430

200

СФ-20

190 - 1100

0,1 - 5,0

930´590´280

78

СФ39

190 - 750

1,0

1250´670´420

130

Различают два варианта газовой хроматографии - газоадсорбционную и газожидкостную. В газоадсорбционной хроматографии неподвижной фазой является адсорбент (активизированный уголь, силикагель, графитированная сажа, полимерные сорбенты). В газожидкостной хроматографии в качестве неподвижной фазы используют слой жидкости, нанесенной на поверхность твердого инертного носителя. Из-за различной сорбируемости компоненты смеси будут продвигаться через слой неподвижной фазы, помещенной в хроматографическую колонку, с разной скоростью. Если на выходе из колонки регистрировать с помощью детектора какое-либо физическое свойство вещества, то выходная хроматографическая кривая (хроматограмма), записанная на ленте регистрирующего устройства, будет представлять собой ряд пиков над нулевой (базовой) линией. Оба варианта газовой хроматографии позволяют выполнять качественный и количественный анализ компонентов смесей любых органических и неорганических газов, жидкостей и твердых тел, имеющих при температуре анализа достаточную упругость паров. Принципиальная схема газового хроматографа приведена на черт. 6.1.

Система подготовки газов 1 служит для стабилизации и очистки потоков газа-носителя и дополнительных газов для питания детектора. В качестве газа-носителя используют азот, гелий, аргон, иногда водород. Выбор газа-носителя определяется в основном типом используемого детектора. Для питания, например, ионизационно-пламенного детектора нужны дополнительные газы - водород и воздух.

Дозирующее устройство 2 позволяет вводить в хроматографическую колонку 3 газовую или жидкую пробу, которая в газообразном состоянии вместе с потоком газа-носителя поступает в колонку, где смесь веществ разделяется на отдельные компоненты. Для ввода газообразных проб применяют газовый кран-дозатор, имеющий калиброванную газовую петлю определенного объема, или используют обычный стеклянный медицинский шприц объемом 1 - 5 мл. Жидкую пробу вводят специальными микрошприцами объемом 1 или 10 мкл в испаритель, который термостатируют при температуре, достаточной для быстрого испарения жидкости и перехода ее в газообразное состояние.



Черт. 6.1. Принципиальная схема газового хроматографа:

1 - система подготовки газов, 2 - дозирующее устройство, 3 - хроматографическая колонка, 4 - детектор, 5 - блок питания детектора, 6 - усилитель, 7 - регистратор, 8 - система обработки сигнала детектора, 9 - термостат, 10 - терморегулятор

Хроматографические колонки 3 бывают трех основных типов - насадочные, микронасадочные и капиллярные. Ввиду простоты изготовления наиболее распространены насадочные колонки, представляющие собой трубки длиной 0,5 - 3,0 м (иногда до 5 м), внутренним диаметром 2 - 6 мм, изготовленные из нержавеющей стали, стекла, фторопласта и имеющие спиральную или U-образную форму. Микронасадочные колонки отличаются от насадочных меньшим диаметром трубки, равным 0,8 - 1,0 мм, и длиной обычно до 2 м. Капиллярные колонки изготавливают из трубки (нержавеющая сталь, стекло или кварц) внутренним диаметром 0,25 - 0,5 мм и длиной 10 - 20 и 100 - 200 м. Насадочные и микронасадочные колонки заполняют насадкой: адсорбентом или инертным твердым носителем с нанесенным на его поверхность тонким слоем неподвижной жидкой фазы. При приготовлении капиллярных колонок на их внутреннюю поверхность также наносят тонкий слой жидкой фазы.

На выходе из колонки анализируемые вещества поступают вместе с потоком газа-носителя в детектор 4. Современный хроматограф, как правило, имеет несколько типов детекторов, из которых надо отметить два наиболее универсальных - катарометр (или детектор по теплопроводности) и пламенно-ионизационный детектор, а также селективные детекторы: электронно-захватный, термоионный, пламенно-фотометрический и др.

Сигнал детектора, зависящий от физико-химических свойств компонента и его содержания в смеси, усиливается и регистрируется автоматическим регистратором 7 в виде хроматограммы. Время выхода компонента (или расстояние на хроматограмме от момента ввода пробы до максимума хроматографического пика) является характеристикой удерживания вещества данной фазой и служит основой для его качественной идентификации. Площадь или высота пика на хроматограмме пропорциональна количеству анализируемого вещества в смеси. Количественную обработку хроматограммы можно выполнять вручную или с помощью специальных систем обработки сигнала детектора 8 на основе ЭВМ или интегратора.

Хроматографические колонки, детекторы и дозирующие устройства термостатируются с помощью терморегуляторов 10. Система термостатирования позволяет устанавливать, изменять по заданной программе и поддерживать необходимую температуру термостата хроматографа 9.

Технические характеристики основных типов отечественных газовых хроматографов приведены в табл. 6.5.

Таблица 6.5

Технические характеристики отечественных газовых хроматографов

Тип прибора

Анализируемые вещества

Основные технические характеристики

тип колонки

диапазон - температурный режим, °С

тип детектора

Цвет-500

Смесь веществ с температурами кипения до 400 °С

Набивные, стеклянные или металлические

-90 ... 399

ДИП

ДТП

ДЭЗ

Агат

Органические и неорганические

Набивные и капиллярные (металлические и стеклянные)

-99 ... 600

ДТП

ДИП

ДЭЗ

ДПФ

ТАД

Модель 3700

То же

Набивные (металлические и стеклянные)

-75 ... 400

ДТП

ДИП

ДЭЗ

ХПМ-4 (переносной)

Органические

Набивные (металлические)

50 ... 200

ДИП

ДТП

Примечание. ДИП - детектор ионизации пламени, ДТП - детектор теплопроводности, ДЭЗ - детектор электронного захвата, ДПФ - детектор пламенно-фотометрический, ТАД - термоаэрозольный детектор.

6.5. ИНДИКАТОРНЫЕ ТРУБКИ (ИТ)

Для повышения эффективности контроля ИЗА используют газоопределители колориметрического типа и индикаторные трубки, основанные на химических реакциях определяемых компонентов с нанесенными на твердый сорбент реагентами, в результате которых образуются окрашенные продукты.

Если для контроля содержания примесей в атмосфере создано много рецептов индикаторных масс на широкий класс ЗВ: СО, СО2, H2S, (NO + NO2), СН2О и т.д., то приборы на основе ИТ для контроля ИЗА разработаны лишь на ограниченное число ЗВ. К ним относятся приборы ГХ-4 с ИТ ТИСО-0,2 и ГХСО-5 с ИТ ТИСО-5, определяющие концентрацию СО в диапазоне 0,25 - 62500 мг/м3 (0,005 - 5 % объема). Оба прибора выпускает Донецкое ПО «Респиратор».

Прибор ГХПВ-1 SО2-10 с ИТ ТИ-SO2-10 определяет концентрацию SO2 и отходящих газах предприятий в диапазоне 0,5 - 10,0 г/м3. Прибор ГХПВ-1 NOx-1 определяет концентрацию NO + NO2 в пересчете на NO2 в диапазоне 0,1 - 1,0 г/м3. Оба прибора выпускает ВНИИОСуголь в г. Перми.

Отдел контроля атмосферы и НПК «Экотест» разработали ИТ для определения NH3 и H2S. Диапазон измеряемых концентраций NH3 0,02 - 1,0 г/м3, H2S - 0,01 - 1,5 г/м3. Комплекты ИТ выпускаются НПК «Экотест» с маркой ГХПВ-2. Приборы аттестованы с погрешностью 25 %.

Все ИТ конструктивно унифицированы и могут использоваться с аспиратором сильфонного типа АМ-5. Необходимый для определения измеряемого компонента объем пробы меняют от 100 до 1000 см3 в зависимости от применяемой индикаторной трубки и концентрации загрязняющего вещества.

Необходимое для анализа время колеблется от 15 с до 4 мин и зависит от объема пробы и плотности набивки индикаторной массы.

В соответствии с ГОСТ 17.2.3.02-78, все индикаторные средства имеют основную приведенную погрешность не более 25 %.

Диапазон температур анализируемого газа на входе в индикаторные трубки 0 - 35 °С.

Требования к влажности анализируемой газовой смеси менее жесткие, однако капельно-жидкая фаза должна отсутствовать.

6.6. ЭЛАСТИЧНЫЕ ПРОБООТБОРНЫЕ ЕМКОСТИ

Перспективным направлением в развитии средств контроля ИЗА является применение эластичных пробоотборных емкостей, совмещающее принципы инструментально-лабораторного анализа, в части отбора проб газа, и инструментального анализа в части определения концентраций в отобранной пробе.

Эластичные пробоотборные емкости используют для отбора, хранения и транспортировки проб газов с последующим анализом концентраций загрязняющих веществ в пробе с помощью инструментальных средств (газоанализаторов). При необходимости для анализа пробы газа можно применять инструментально-лабораторные средства анализа.

Эластичные емкости представляют собой мешки из полимерной пленки различных объемов (1 - 10 дм3), снабженные одним или двумя герметичными штуцерами. Интерес к такого рода пробоотборным устройствам связан с простотой отбора, транспортировки и хранения проб и с возможностью отбора любого необходимого для анализа количества газовой смеси непосредственно из мешка.

Основным критерием при выборе полимерного материала должна быть его устойчивость к воздействию отбираемого компонента или компонентов, обеспечивающая сохранность качественного состава и концентрации отдельных газов в течение заданного промежутка времени.

За рубежом для изготовления эластичных емкостей используют полимерные «Tedlar», «Mailar», «Teflon» и многослойные композиционные пленки. Из номенклатуры выпускаемых отечественной промышленностью пленок наиболее подходят для изготовления мешков фторопластовые пленки Ф-20А.

Использовать эластичные емкости для отбора газовых проб из ИЗА можно только на предприятиях теплоэнергетики.

Эластичные емкости предназначены для отбора, хранения и транспортировки проб СО, NOх и SO2. Для обеспечения достоверности отобранной пробы эластичные емкости используют только совместно с устройством отбора и подготовки газовой пробы.

6.7. ТЕХНИЧЕСКИЕ СРЕДСТВА КОНТРОЛЯ ТЕМПЕРАТУРЫ, ВЛАЖНОСТИ, ДАВЛЕНИЯ И СКОРОСТИ ПОТОКА

При определении значений массовых выбросов ЗВ в атмосферу необходимо определять температуру газового потока и в ряде случаев - влажность отходящих газов.

Основными средствами измерения температуры являются ртутные термометры, термометры сопротивления и термопары. Технические характеристики средств измерения температуры приведены в табл. 6.6. Кроме этого в ряде случаев, например при измерении температуры газовых потоков в градирнях и брызгальных бассейнах, можно использовать спиртовые термометры.

Для всех средств измерения температуры характерна некоторая инерционность. Для жидкостных термометров время выдержки в газовом потоке рассчитывают по формуле.

t = eln[t - t0)/Dt], (6.1)

где t - время выдержки; e - константа отставания для движущегося газа, e = 50; t0 - показания термометра до измерения; °С; t - температура газа в газоходе, °С; Dt - заданная погрешность измерения температуры, °С.

Таблица 6.6
1   2   3   4   5   6   7   8   9   10   ...   23

Похожие:

Руководство по контролю источников загрязнения icon Руководство по контролю источников загрязнения атмосферы онд-90
Руководство предназначено для оказания практической помощи территориальным Государственным комитетам по охране природы в организации,...
Руководство по контролю источников загрязнения icon Руководство по контролю источников загрязнения атмосферы онд-90
Руководство предназначено для оказания практической помощи территориальным Государственным комитетам по охране природы в организации,...
Руководство по контролю источников загрязнения icon Руководство по методам полевых и лабораторных исследований снежного...
Руководство по методам полевых и лабораторных исследований снежного покрова для изучения Закономерностей длительного загрязнения...
Руководство по контролю источников загрязнения icon Руководство по контролю загрязнения атмосферы рд 52. 04. 186-89
Целью этой программы является получение сведений о переносе в атмосфере загрязняющих веществ через границы государств в европейском...
Руководство по контролю источников загрязнения icon Руководство по контролю загрязнения атмосферы рд 52. 04. 186-89
Организация такой службы позволяет накопить материал для оценки возможных изменений климата, перемещения и выпадения вредных веществ,...
Руководство по контролю источников загрязнения icon Руководство по ведению лесного хозяйства в зонах радиоактивного загрязнения...
Руководство предназначено для специалистов лесного хозяйства, работающих в условиях радиоактивного загрязнения
Руководство по контролю источников загрязнения icon Международная совместная программа по комплексному мониторингу влияния...
Руководство предназначено для научных работников и специалистов в области комплексного мониторинга и изучения откликов экосистем...
Руководство по контролю источников загрязнения icon Предисловие 4 раздел 1 охрана и регулирование использования атмосферного
Предисловие 4раздел 1 охрана и регулирование использования атмосферного воздуха51. 1 Оценка источников загрязнения и качества атмосферного...
Руководство по контролю источников загрязнения icon Руководство по эксплуатации м 086. 000. 00 Рэ
Настоящее руководство по эксплуатации, совмещенное с паспортом, предназначено для ознакомления с принципом действия, конструктивными...
Руководство по контролю источников загрязнения icon Руководство по эксплуатации универсального пресс-пистолета типа up2el-14
Пожалуйста, следуйте этим инструкциям во избежание травм и загрязнения окружающей среды
Руководство по контролю источников загрязнения icon Заседание Комиссии по контролю качеству открытым. О повестке дня...
Комиссии по контролю качества осуществления предпринимательской деятельности членами нп сро «моожс»
Руководство по контролю источников загрязнения icon 12 мая 1994 года Заместитель Министра транспорта Российской Федерации В. Ф. Березин
Конвенция Марпол-73/78, Конвенции по предотвращению загрязнения моря сбросами отходов и других материалов 1972 г., Конвенции по защите...
Руководство по контролю источников загрязнения icon Инструкция по входному контролю у потребителя 15. Характерные неисправности...
Руководство по эксплуатации предназначено для обучения работающего с молотками отбойными пневматическими мо и обслуживающего их персонала...
Руководство по контролю источников загрязнения icon Планируемых в рамках подпрограммы 4 «Развитие системы мониторинга...
Основная цель системы государственного мониторинга загрязнения окружающей среды обеспечение потребностей государства и населения...
Руководство по контролю источников загрязнения icon Планируемых в рамках подпрограммы 4 «Развитие системы мониторинга...
Основная цель системы государственного мониторинга загрязнения окружающей среды обеспечение потребностей государства и населения...
Руководство по контролю источников загрязнения icon Практическое руководство
В настоящем Практическом руководстве содержатся положения, направленные на регулирование сотрудничества, координации и предоставления...

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск