Скачать 456.29 Kb.
|
Методика тестирования акустических системhttp://article.techlabs.kz/print/49_21020.html26.07.2007 00:05, Василий Запотылок Содержание статьи:
Мы продолжаем нашу традицию, и публикуем очередную статью из серии "методика тестирования". Подобные статьи служат как общетеоретическим базисом, помогающим читателям получить введение в тему, так и конкретным руководством по интерпретации результатов тестов, полученных в нашей лаборатории. Сегодняшняя статья по методике будет несколько необычной – мы решили посвятить значительную ее часть теории звука и акустических систем. Зачем это нужно? Дело в том, что звук и акустика – практически самая сложная из всех освещаемых нашим ресурсом тематик. И, пожалуй, среднестатистический читатель подкован в этой области меньше, чем, скажем, в оценке разгонного потенциала различных степпингов Core 2 Duo. Мы рассчитываем, что справочные материалы, которые легли в основу статьи, а также непосредственное описание методики измерения и тестирования позволят заполнить некоторые пробелы в знаниях всех любителей хорошего звука. Итак, начнем с основных терминов и понятий, которые обязан знать любой начинающий аудиофил. Основные термины и понятия Небольшое введение в музыку Начнем оригинально: с начала. С того, что звучит через колонки, и о прочих наушниках. Так уж повелось, что среднестатистическое человечье ухо различает сигналы в диапазоне от 20 до 20 000 Гц (или 20 кГц). Этот довольно солидный диапазон в свою очередь делится обычно на 10 октав (можно поделить на любое другое количество, но принято именно 10). В общем случае октава – это диапазон частот, границы которого вычисляются удвоением или ополовиниванием частоты. Нижняя граница последующей октавы получается удвоением нижней границы предыдущей октавы. Кто знаком с булевой алгеброй, то тому этот ряд покажется странно знакомым. Степени двойки с дописанным нулем в конце в чистом виде. Собственно, зачем нужно знание октав? Оно необходимо для того, чтобы прекратить путаницу в том, что надо называть нижним, средним или еще каким басом и тому подобное. Общепринятый набор октав однозначно определяет, кто есть кто с точностью до герца.
Последняя строка не нумерована. Это связано с тем, что в стандартную десятку октав она не входит. Обратите внимание на столбец "Название 2". Здесь содержатся названия октав, которые выделяются музыкантами. У этих "странных" людей нет понятия глубокого баса, зато есть одна октава сверху - от 20480 Гц. Поэтому такое расхождение в нумерации и названиях. Теперь можно говорить более предметно о частотном диапазоне акустических систем. Следует начать с неприятной новости: глубокого баса в мультимедийной акустике нет. 20 Гц подавляющее большинство любителей музыки на уровне -3 дБ попросту никогда не слышало. А теперь новость приятная и неожиданная. В реальном сигнале таких частот тоже нет (за некоторым исключением, естественно). Исключением является, например, запись с судейского диска IASCA Competition. Песенка называется "The Viking". Там даже 10 Гц записаны с приличной амплитудой. Этот трек записывали в специальном помещении на огромном органе. Систему, которая отыграет "Викингов", судьи увешают наградами, как новогоднюю елку игрушками. А с реальным сигналом все проще: басовый барабан – от 40 Гц. Здоровенные китайские барабаны – тоже от 40 Гц (есть там среди них, правда, один мегабарабан. Так он аж от 30 Гц начинает играть). Живой контрабас – вообще от 60 Гц. Как можно заметить, 20 Гц здесь не упоминаются. Поэтому можно не расстраиваться по поводу отсутствия настолько низких составляющих. Они для прослушивания реальной музыки не нужны. На рисунке представлена спектрограмма. На ней две кривые: фиолетовая DIN и зеленая (от старости) IEC. Эти кривые отображают распределение по спектру среднего музыкального сигнала. Характеристика IEC применялась до 60-х годов 20-го века. В те времена предпочитали не издеваться над пищалкой. А после 60-х эксперты обратили внимание на то, что предпочтения слушателей и музыка несколько поменялись. Это отразилось в стандарте великого и могучего DIN. Как видно, высоких частот стало гораздо больше. Но баса не прибавилось. Вывод: не нужно гоняться за супербасистыми системами. Тем более что желанных 20 Гц там все равно не положили в коробку. Характеристики акустических систем Теперь, зная азбуку октав и музыки, можно приступить к пониманию АЧХ. АЧХ (амплитудно-частотная характеристика) – зависимость амплитуды колебания на выходе устройства от частоты входного гармонического сигнала. То есть системе подают на вход сигнал, уровень которого принимается за 0 дБ. Из этого сигнала колонки с усилительным трактом делают, что могут. Получается у них обычно не прямая на 0 дБ, а некоторым образом изломанная линия. Самое интересное, кстати, заключается в том, что все (от аудиолюбителей до аудиопроизводителей) стремятся к идеально ровной АЧХ, но "пристремиться" боятся. Собственно, в чем польза АЧХ и зачем авторы TECHLABS с завидным постоянством стараются замерить эту кривую? Дело в том, что по ней можно установить настоящие, а не нашептанные "злым маркетинговым духом" производителю границы частотного диапазона. Принято указывать, при каком падении сигнала граничные частоты все-таки проигрываются. Если не указано, то считается, что были взяты стандартные -3 дБ. Вот здесь и кроется подвох. Достаточно не указать, при каком падении были взяты значения границы, и можно абсолютно честно указывать хоть 20 Гц – 20 кГц, хотя, действительно, эти 20 Гц достижимы при уровне сигнала, который сильно отличается от положенных -3. Также польза АЧХ выражается в том, что по ней, хотя и приблизительно, но можно понять, какие проблемы возникнут у выбранной системы. Причем системы в целом. АЧХ страдает от всех элементов тракта. Чтобы понять, как будет звучать система по графику, нужно знать элементы психоакустики. Если коротко, то дело обстоит так: человек разговаривает в пределах средних частот. Поэтому и воспринимает их же лучше всего. И на соответствующих октавах график должен быть наиболее ровным, так как искажения в этой области сильно давят на уши. Также нежелательно наличие высоких узких пиков. Общее правило здесь такое: пики слышны лучше, чем впадины, и острый пик слышен лучше пологого. Подробнее на этом параметре мы остановимся, когда будем рассматривать процесс его измерения. Фазочастотная характеристика (ФЧХ) показывает изменение фазы гармонического сигнала, воспроизводимого АС в зависимости от частоты. Однозначно может быть вычислена из АЧХ с помощью преобразования Гильберта. Идеальная ФЧХ, говорящая, что система не имеет фазочастотных искажений, прямая, проходящая через начало координат. Акустика с такой ФЧХ называется фазолинейной. Долгое время на эту характеристику не обращали внимания, так как существовало мнение о том, что человек не восприимчив к фазочастотным искажениям. Сейчас же измеряют и указывают в паспортах дорогих систем. Импульсной характеристикой (импульсным откликом) называют выходной сигнал АС при подаче на вход короткого одиночного импульса. Идеал – если импульсная характеристика повторит импульс на входе без изменений. Часто же до и после импульса на выходе появляются всплески меньшей амплитуды. Такое поведение отклика фильтра говорит о том, что на выходе акустической системы импульс тоже будет порождать паразитные колебания. Переходная характеристика – выходной сигнал фильтра, который является реакцией на входной сигнал типа ступенька (сигнал с нуля мгновенно достигает некоторой амплитуды и устанавливается на таком уровне). Такой импульс также может порождать и порождает паразитные колебания. Естественно, это отразится и на поведении АС, которая воспроизведет и импульс, и паразитные колебания. Характеристика позволяет судить о когерентности системы. Кумулятивное затухание спектра (КЗС) – совокупность осевых АЧХ (АЧХ, измеренных на акустической оси системы), полученных с определенным временным промежутком при затухании единичного импульса и отраженных на одном трехмерном графике. Таким образом, по графику КЗС можно точно сказать, какие области спектра с какой скоростью будут затухать после импульса, то есть график позволяет выявлять запаздывающие резонансы АС. Если КЗС имеет много резонансов после верхней середины, то такая акустика субъективно будет звучать "грязно", "с песочком на ВЧ" и т.д. Импеданс АС – это полное электрическое сопротивление АС, включая сопротивления элементов фильтра (комплексная величина). Это сопротивление содержит в себе не только активное сопротивление, но и реактивные сопротивления емкостей и индуктивностей. Так как реактивное сопротивление зависит от частоты, то и импеданс целиком подчиняется также ей. Если говорят об импедансе, как о численной величине, начисто лишенной комплексности, то высказываются о его модуле. График импеданса трехмерный (амплитуда-фаза-частота). Обычно рассматриваются его проекции на плоскости амплитуда-частота и фаза-частота. Если объединить эти два графика, то получится график Боде. А проекция амплитуда-фаза – график Найквиста. Учитывая то, что импеданс зависит от частоты и не постоянен, по нему можно легко определить, какую сложность представляет собой акустика для усилителя. Также по графику можно сказать, какая это акустика (ЗЯ – закрытый ящик), ФИ (с фазоинвертором), как будут воспроизводиться отдельные участки диапазона. Чувствительность – см. в параметрах Тиля-Смолла. Когерентность – согласованное протекание нескольких колебательных или волновых процессов во времени. Означает, что сигнал от разных ГГ акустических систем придет к слушателю одновременно, то есть говорит о сохранности фазовой информации. Значение комнаты прослушивания Комната прослушивания (в среде аудиофилов часто сокращают до КдП), да и его условия крайне важны. Некоторые ставят КДП на первое место по важности и уж после нее – акустику, усилитель, источник. Это в некоторой степени оправданно, так как комната способна делать все, что угодно, с измеряемыми микрофоном графиками и параметрами. Могут появляться пики или провалы на АЧХ, которых не было на измерениях в заглушенной комнате. Изменится и ФЧХ (вслед за АЧХ), и переходные характеристики. Для того чтобы уяснить, откуда берутся такие изменения, нужно ввести понятие комнатных мод. Комнатные моды – это красиво названные комнатные резонансы. Звук излучается акустической системой во все стороны. Звуковые волны отражаются от всего, что только есть в комнате. В общем случае поведение звука в отдельно взятой комнате для прослушивания (КДП) абсолютно непредсказуемо. Есть, конечно же, расчеты, позволяющие оценить влияние различных мод на звук. Но они существуют для пустой комнаты с идеализированным покрытием. Поэтому приводить здесь их не стоит, они не имеют практической ценности в бытовых условиях. Надо, однако, знать, что резонансы и причины их появления напрямую зависят от частоты сигнала. Так, например, низкие частоты возбуждают моды комнаты, которые обусловлены размерами КДП. Гулкость баса (резонанс на 35-100 Гц) – яркий представитель появления резонансов в ответ на сигнал низкой частоты в стандартной комнате 16-20 м2. Высокие частоты порождают несколько иные проблемы: появляются дифракция и интерференция звуковых волн, которые делают характеристику направленности АС частотно-зависимой. То есть направленность АС с ростом частоты становится все более узкой. Из этого следует, что максимальный комфорт получит слушатель на пересечении акустических осей колонок. И только он. Все остальные точки пространства недополучат информации или получат ее искаженной тем или иным образом. Влияние комнаты на АС можно значительно уменьшить, если заглушить КДП. Для этого применяются различные звукопоглощающие материалы – от плотных штор и ковров до специальных плит и хитрых конфигураций стен и потолка. Чем глуше помещение, тем больший вклад вносит в звучание именно АС, а не отражения от любимого компьютерного стола и горшка с геранью. |
Инструкция дапоксетин Торговое название Торговое название: Дапоксетин. Международное (патентованное) название: Дапоксетина гидрохлорид (Dapoxetine), Priligy |
1: Гигиена воздушной среды Название и определение. Полное название науки «Зоогигиена с основами проектирования животноводческих объектов», краткое «Зоогигиена».... |
||
Название предмета Умк (название учебника, автор, год издания) Физика. 9 кл.: учебник/ А. В. Перышкин, Е. М. Гутник. М.: Дрофа, 2014 |
Pimafucin регистрационный номер: Международное непатентованное название:... Лекарственная форма: суппозитории вагинальные; таблетки, покрытые кишечно-растворимой оболочкой; крем |
||
Утверждаю директор название организации Администратор принимается на работу и увольняется с работы директором название организации |
Название проекта Название проекта: «Исследование поглощающей способности некоторых медицинских препаратов адсорбционного действия» |
||
Название проекта Название проекта: «Исследование поглощающей способности некоторых медицинских препаратов адсорбционного действия» |
Название учреждения Название учреждения муниципальное казенное общеобразовательное учреждение «Кош-Агачская средняя общеобразовательная школа имени В.... |
||
Название оу (полностью) Название оу (полностью): Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №617 Приморского... |
Название оу (полностью) Название оу (полностью): Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №617 Приморского... |
||
Название статьи Название статьи на английском языке: «The Roman Spirit» of the Code of Napoleon |
Конкурс «Лучшее еvent-агентство, сертифицированное акмр» регистрационная... Наличие постоянных партнеров (подрядчиков, поставщиков) – название компаний, рекомендации |
||
Название: Пропаганда гражданской обороны-важная задача Название: Учебно-методическое пособие по подготовке руководящего командно-начальствующего состава гражданской обороны |
Название образовательного учреждения Название образовательного учреждения: маоу средняя общеобразовательная школа с. Минаевки Асиновского района Томской области |
||
Оао «Название организации» ОАО «Название организации» «Должностная... Подразделение |
Название и описание профессиональной компетенции Название профессиональной компетенции: «Ремонт и обслуживание легковых автомобилей» |
Поиск |