Скачать 2.43 Mb.
|
4.2. Корреляционный анализ Корреляционный анализ предназначен для выявления наличия, а также определения направления и силы линейной связи между несколькими переменными, имеющими интервальный или порядковый тип шкалы. Необходимо отметить, что дихотомические переменные также могут принимать участие в корреляционном анализе. С точки зрения SPSS они рассматриваются как порядковые переменные. В табл. 4.3 представлены основные характеристики переменных, участвующих в анализе. Таблица 4.3. Основные характеристики переменных, участвующих в корреляционном анализе
Наличие, направление и силу линейной связи отражают коэффициенты корреляции. Они варьируются от -1 до +1. ■ -1 соответствует абсолютно разнонаправленной зависимости (с возрастанием одной переменной другая убывает); ■ +1 отражает полное соответствие между переменными (то есть они, по сути, являются одним и тем же); ■ 0 показывает полное отсутствие всякой связи. Для удобства интерпретации корреляций применяются семантические интервалы, причем при анализе данных в маркетинговых исследованиях обычно используются следующие градации (табл. 4.4). Таблица 4.4. Градации коэффициентов корреляции
Существует два основных типа коэффициентов корреляции, рассчитываемых в зависимости от вида шкалы переменных, участвующих в анализе. 1. Для переменных с интервальной шкалой применяется коэффициент корреляции Пирсона. Он позволяет охарактеризовать линейную связь между двумя переменными по указанным параметрам (табл. 4.4): наличию (есть/нет), направлению (убывает/возрастает) и силе (очень слабая/слабая/умеренная/сильная). 2. Если хотя бы одна из пары исследуемых переменных имеет порядковую или дихотомическую шкалу, используются ранговые коэффициенты корреляции Спирмана или Кендала. Чаще всего эти коэффициенты применяются в маркетинговых исследованиях в тех случаях, когда необходимо установить степень соответствия двух ранжированных списков. Например, если имеются схемы выбора какого-либо продукта различными целевыми группами респондентов (в виде ранжированных по важности параметров) и необходимо установить, насколько точно они соответствуют друг другу (или различаются). Ниже мы рассмотрим перечисленные типы коэффициентов корреляции более подробно на практических примерах из маркетинговых исследований. 4.2.1. Исследование линейных корреляций по Пирсону, Спирману и Кендалу Сначала мы рассмотрим пример применения коэффициента корреляции Пирсона. Предположим, что у нас есть ответы респондентов на следующие два вопроса. Каков Ваш среднемесячный доход в расчете на одного члена семьи? с вариантами ответа: ■ до $100; ■ от $ 100 до $ 300; ■ от $ 300 до $ 600; ■ от $ 600 до $ 1000; ■ от $ 1000 до $ 1500; ■ свыше $1500. Как часто Вы посещаете рестораны? с вариантами ответа: ■ более 1 раза в день; ■ примерно 1 раз в день; ■ 2-3 раза в неделю; ■ примерно 1 раз в неделю; ■ 2-3 раза в месяц; ■ примерно 1 раз в месяц; ■ реже 1 раза в месяц. В результате ввода в компьютер заполненных анкет респондентов были получены две переменные: q3 (первый вопрос) и q28 (второй вопрос). Необходимо установить, зависит ли частота посещения ресторанов от дохода респондентов, и если да, то каким образом. В связи с тем, что в ходе опроса при ответе на каждый вопрос респондентам предлагалось на выбор несколько вариантов ответа, тип шкалы у полученных переменных получился порядковым (в файле данных есть только коды ответов, но не сами числовые значения, отражающие частоту посещения ресторана или уровень дохода). Далее мы рассмотрим не только как использовать коэффициент корреляции Пирсона, но также как использовать данный коэффициент для анализа квазипорядковых переменных. Дело в том, что некоторые переменные, хотя они и закодированы как порядковые, по сути являются интервальными (как в нашем случае). Это делается специально, чтобы, с одной стороны, увеличить долю респондентов, ответивших на вопрос, а с другой стороны, уменьшить число возможных ошибок при вводе в компьютер текстовых полей (для открытых вопросов). Интервалы также полезны при анализе, поскольку нет необходимости кодировать текстовые (или интервальные) переменные, а можно сразу увидеть группы (интервалы) значений. Практика показывает, что подобное составление анкет для маркетинговых исследований является стандартным, поэтому корреляционный анализ редко проводится на изначально интервальных переменных (текстовые поля анкеты). Для описываемых квазипорядковых переменных следует применять именно коэффициент корреляции Пирсона. Использование коэффициентов Спирмана или Кендала в этом случае является некорректным. Более подробно эти два коэффициента представлены ниже; пока же в общих чертах о них можно сказать следующее. Коэффициенты Спирмана или Кендала показывают только степень соответствия порядка следования вариантов ответа в ранжированных списках (есть отсутствие инверсий). При этом корреляции по Спирману и Кендалу используются в основном, когда элементы ранжированных списков представлены мнемоническими, а не числовыми константами. Таким образом, данные коэффициенты не помогут нам в характеристике зависимости между частотой посещения ресторанов и доходом респондентов. Однако в нашем случае нельзя применять и коэффициент корреляции Пирсона, так как в этом случае анализировались бы коды интервалов (1 -6 — в первом вопросе и 1 -7 — во втором), а не действительные ответы респондентов на вопросы1. Итак, сначала мы должны преобразовать имеющиеся у нас порядковые переменные к интервальному виду. Лучше всего сделать это при помощи замены кодов интервалов (1-6) на средние значения данных интервалов. Например, среднее значение для интервала 3 в переменной q3 — это $ 450 (450 = (300 + 600) / 2). Преобразовав обе переменные к данному виду, мы получим следующие интервальные переменные q3_i и q28_i (табл. 4.5)2. Таблица 4.5. Схема перекодировки порядковых переменных (q3 и q28) в интервальные (q3_i и q28_i)
Т еперь мы можем приступить непосредственно к корреляционному анализу (описанию зависимости между частотой посещения ресторанов и уровнем дохода). Для этого выберите пункт меню Analyze ► Correlate ► Bivariate. В открывшемся диалоговом окне (рис. 4.17) выберите в левом списке всех доступных переменных две интересующие нас (q3_i и q28_i) и перенесите их в область Variables. Остальные параметры в этом диалоговом окне, установленные по умолчанию, следует оставить неизменными: вывод коэффициентов корреляции Пирсона (параметр Pearson в области Correlation Coefficients) и статистической значимости коэффициентов (параметр Two-tailed в области Test of Significance). Кнопка Options не предлагает исследователю каких-либо существенных параметров. Чтобы запустить процедуру построения корреляционной таблицы, щелкните на кнопке ОК. Рис. 4.17. Диалоговое окно Bivariate Correlations (корреляция Пирсона) В окне SPSS Viewer появится таблица Correlations с результатами расчетов коэффициента корреляции Пирсона и статистической значимости данного коэффициента. Как видно из рис. 4.18, в нашем случае коэффициент корреляции Пирсона между двумя исследуемыми переменными (q3_i и q28_i) равен +0,665, а его статистическая значимость меньше 0,001. Следовательно, можно сделать вывод о том, что между среднемесячным доходом респондентов и частотой посещения ими ресторанов существует статистически значимая умеренная (средняя) линейная возрастающая зависимость. То есть частота посещения ресторанов в достаточно высокой степени (коэффициент Пирсона = 0,7) зависит от уровня доходов потребителей, причем при росте среднемесячного дохода частота посещения ресторанов линейно возрастает. Существует возможность проводить корреляционный анализ сразу для нескольких переменных. Для этого необходимо поместить эти переменные в область Variables диалогового окна Bivariate Correlations. В таблице Correlations будут показаны коэффициенты корреляции для каждой пары исследуемых переменных. Теперь рассмотрим процедуру проведения корреляционного анализа при помощи ранговых коэффициентов Спирмана и Кендала. В данных методах одна переменная (эталонная) представлена в виде ранжированной последовательности мнемонических категорий, а другой переменной присваиваются ранговые места. Корреляционные коэффициенты рассчитываются исходя из количества инверсий, то есть числа нарушений порядка следования рангов по сравнению с первым рядом. В большинстве случаев рекомендуется применять коэффициент корреляции Спирмана. Использование коэффициента Кендала оправдано только в том случае, когда в структуре данных имеются выбросы. Рис. 4.18. Таблица Correlations (корреляция Пирсона) В практике маркетинговых исследований наиболее часто коэффициенты корреляции Спирмана применяются для анализа не всей выборочной совокупности респондентов (базы данных в целом), а агрегированных ранжированных перечней, полученных в результате других преобразований1. Приведем пример. Предположим, что в результате опроса посетителей магазинов одежды были получены ответы на следующие два вопроса. Какие факторы для Вас наиболее важны при выборе одежды? с вариантами ответа: ■ Высокое качество одежды. ■ Доступные цены. ■ Широта ассортимента одежды. ■ Близость к дому или работе. ■ Высокое качество обслуживания. ■ Красивый интерьер магазина. Оцените, пожалуйста, следующие характеристики данного магазина одежды (в котором происходит опрос) по пятибалльной шкале (от 1 — очень плохо до 5 — отлично) с вариантами ответа: ■ Высокое качество одежды. ■ Доступные цены. ■ Широта ассортимента одежды. ■ Близость к дому или работе. ■ Высокое качество обслуживания. ■ Красивый интерьер магазина. ■ Ваша общая оценка работы данного магазина. Над результатами второго вопроса был проведен множественный линейный регрессионный анализ. Анализировалось влияние оценок частных параметров всех исследованных магазинов одежды на их общую оценку. В разделе 4.3 подробно рассматривается процедура линейного регрессионного анализа, позволяющая, в частности, построить ранжированный перечень частных параметров по силе их влияния на общую оценку. Таким образом, были получены два ранжированных списка с одинаковыми категориями: две схемы выбора магазина одежды. Затем оба списка были введены в SPSS под кодами, представленными выше: от 1 (наиболее важный фактор) до 6 (наименее важный фактор) (рис. 4.19). На рис. 4.20 представлены данные списки в мнемонической форме. Первый список представлен в переменной sc_l; второй — в sc_2. Рис. 4.19. Окно SPSS Data Editor с двумя ранжированными перечнями наиболее значимых для респондентов факторов выбора магазинов одежды Рис. 4.20. Окно SPSS Data Editor с двумя ранжированными перечнями наиболее значимых для респондентов факторов выбора магазинов одежды одежды Как вы видите на рис. 4.20, две схемы выбора, составленные на основании прямого метода (вопрос 1) и на основании регрессионного анализа (вопрос 2), соответствуют друг другу не полностью, различаясь в порядке следования первой и второй категорий. Проанализируем эти схемы выбора магазинов одежды на предмет соответствия при помощи коэффициента корреляции Спирмана. Д ля этого снова откройте диалоговое окно Bi variate Correlations, выбрав пункт меню Analyze ► Correlate ► Bivariate. Перенесите две интересующие нас переменные — Схема №1 (составленная по вопросу 1) и Схема №2 (составленная по вопросу 2) — из левого списка всех доступных переменных в область Variables (рис. 4.21). Отмените вывод корреляции Пирсона и вместо него выберите параметр Spearman (корреляция Спирмана). После этого начните расчет при помощи щелчка на кнопке ОК. Рис. 4.21. Диалоговое окно Bivariate Correlations (корреляция Спирмана)одежды В окне SPSS Viewer появится таблица Correlations с результатами расчета коэффициента ранговой корреляции (Спирмана) по двум анализируемым переменным. Как следует из рис. 4.22, две рассматриваемые схемы выбора различаются несущественно. Данный вывод можно сделать из сильной корреляции между переменными sc_l и sc_2 (коэффициент корреляции Спирмана = 0,9), характеризующейся весьма высокой статистической значимостью (0,005). Рис. 4.22. Таблица Correlations (корреляция Спирмана) В заключение напомним, что ранговый коэффициент корреляции Спирмана (в отличие от Кендала) может применяться и в качестве аналога корреляции Пирсона при исследовании зависимостей между переменными, не приводимыми к интервальному виду и потому не являющимися ранжированными списками. В качестве примера можно привести гипотетический случай, рассмотренный выше, когда анализируется влияние пола респондентов (дихотомическая шкала) на уровень образования (порядковая по сути, но номинальная по виду шкала). |
Бенчмаркинг и маркетинговые исследования в разработке стратегий маркетинга Практика показала необходимость разделения функций отдельных отделов и служб в целях выделения специализированной службы по организации... |
Программа дисциплины «Стратегия социальных и маркетинговых исследований»... Курс «Стратегия социальных и маркетинговых исследований» рассчитан на студентов магистратуры, имеющих квалификацию бакалавра экономики... |
||
Неотложные меры самопомощи и взаимопомощи при сердечном приступе Помимо этого статистика показывает, что многие больные сами (или их родственники) поздно вызывают врача скорой медицинской помощи,... |
План Особенности маркетинга на рынке услуг Характеристика услуг и их классификация Организация управления маркетингом компании «Аэрофлот – Российские Международные Авиалинии» |
||
Самопомощи и взаимопомощи при развитии острых жизнеугрожающих заболеваний (состояний) Помимо этого статистика показывает, что многие больные сами (или их родственники) поздно вызывают врача скорой медицинской помощи,... |
Комплекс маркетинга Раздел Организация производственного маркетинга... Систематизация основных рекомендаций по созданию комплекса маркетинговых мероприятий на ООО "Бина" |
||
Власть Как выяснилось, многие кыргызы недовольны своей жизнью. Это перечеркивает на корню "результаты исследований" ангажированных западных... |
Программа дисциплины Теория и практика онлайн исследований для направления... К. социол н., генеральный директор компании Online Market Intelligence () |
||
Использование средств маркетинга в антикризисном управлении на транспорте Данные и многие другие факторы в условиях кризисов, в поисках путей выхода транспортных организаций из трудных ситуаций обусловливают... |
Курсовая работа по курсу “Основы маркетинга” Тема «Стратегии маркетинга... Санкт-Петербургский государственный технологический институт (технический университет) |
||
Система работы с детьми, имеющими задержку речевого развития Логопедическая практика показывает, что с каждым годом увеличивается количество детей с задержкой речевого развития |
Инструкция показания дисплея: Этот будильник off-the-wall показывает... Примечание: если появится надпись "p m.", то часы показывают время пополудни (дневное). В противном же случае часы показывают время... |
||
Инструкция по сбору суточной порции мочи с консервантом для исследований Важно! Зафиксировать время начала и время окончания сбора, а также (диурез) итоговый обьем собранного биоматериала |
1 Теоретические аспекты анализа сбытовой политики 8 Многие специалисты по менеджменту определили, что недостаточная эффективность сбытовой деятельности ставит под угрозу существование... |
||
1. 2Принципы работы erp-системы Мировая практика последних лет показывает, что эффективное решение подобных задач достигается путем развертывания информационных... |
Доклад Тема: Суицид среди несовершеннолетних. «Группы смерти» в социальных сетях Несмотря на пристальное публичное внимание к проблеме использования социальных сетей для подталкивания детей и подростков к суициду,... |
Поиск |