Скачать 3.41 Mb.
|
Н.Н.Васерин, Н.К.Дадерко, Г.А.Прокофьев ПРИМЕНЕНИЕ ПОЛУПРОВОДНИКОВЫХ ИНДИКАТОРОВ Энергоатомиздат 1991ПРЕДИСЛОВИЕ РЕДАКТОРА Значительные успехи, достигнутые в области вычислительной техники и разрабатываемых на ее основе цифровых аппаратурных комплексов, стимулировали широкий фронт работ по созданию электронных индикаторных устройств и систем. В настоящее время в аппаратурном обеспечении цифровых комплексов в качестве элементов индикации широко используются ЭЛТ, жидкокристаллические панели, газоразрядные, полупроводниковые (светодиодные), электролюминесцентные и электрохром-ные индикаторы. Каждый из указанных типов индикаторов, основанных на использовании различных физических принципов, предъявляет определенные требования к амплитудам управляющих напряжений, виду тока, плотности размещения на лицевых панелях приборов, внешней освещенности. Выбор типа индикаторов диктуется часто не только оптимальным сочетанием указанных технических характеристик, но и стоимостью, сроками разработки, состоянием серийного освоения. Высокие технические характеристики полупроводниковых индикаторов (ППИ) обеспечили их успешное внедрение в качестве элементов индикации в аппаратуре, используемой в различных областях народного хозяйства: в приборах управления стационарным производственно-технологическим оборудованием, движущимися объектами, объектами бытового назначения и др. Одним из достоинств полупроводниковой технологии индикаторов является возможность их конструктивного исполнения в виде унифицированных модулей, обеспечивающих возможность бесшовной стыковки. Кроме того, модульность исполнения индикаторов гарантирует высокую ремонтопригодность устройств отображения информации. Другим не менее важным достоинством ППИ является совместимость уровней их управляющих напряжений и потребляемых токов с напряжениями логических уровней и токами микросхемной техники. Это позволяет значительно сократить объемы схем управления элементами индикации и повысить надежность индикаторных устройств и систем за счет использования элементной базы, выполненной только по полупроводниковой технологии. Предлагаемая книга является первой попыткой дать широкому кругу инженеров и научных работников общие сведения и фактический материал по техническим характеристикам ППИ и микросхем управления ими, вопросам повышения контраста изображения, а также вопросам конструирования электронных полупроводниковых индикаторных устройств и систем. ПРЕДИСЛОВИЕ АВТОРОВ Современная радиотехническая и вычислительная аппаратура, в которой предусмотрены элементы управления или наблюдения за ее функционированием, обязательно содержит устройство или систему отображения информации, основной частью которых являются индикаторы. Наибольшее распространение в настоящее время в аппаратуре индивидуального, группового, а в последнее время и коллективного пользования получили знакосинтезирующие ППИ, что объясняется рядом их преимуществ перед другими индикаторами. Номенклатура современных отечественных ППИ позволяет решать практически все задачи индикации. Несмотря на успехи, достигнутые в области разработки и производства ППИ, вопросы правильного применения индикаторов с целью получения максимального эффекта как с точки зрения обеспечения высокой надежности, так и с точки зрения обеспечения оптимальных значений эргономических и светотехнических параметров, мало известны широкому кругу инженеров и научных работников, занимающихся вопросами применения ППИ. Одной из важных причин является практически полное отсутствие необходимой отечественной научно-технической литературы, посвященной вопросам применения ППИ. Имеющиеся справочники содержат параметры и характеристики конкретных типов ППИ и не освещают вопросы применения индикаторов. Изданные в последние годы книги [1, 11], посвященные вопросам конструкции и технологии изготовления ППИ, основаны целиком на зарубежных материалах и вопросы применения не освещают. В книге «Электронные приборы для отображения информации» Ю. А. Быстрова, И. И. Литвака, Г. М. Персианова (издательство «Радио и связь», 1985 г.) вопросы применения рассматриваются недостаточно. Единственная книга, посвященная вопросам применения [7], написана на материалах фирмы «Hewlett Packard», что затрудняет ее применение в отечественной практике. Предлагаемая книга построена целиком на отечественном материале и использует опыт работы авторов за последние годы. В книге принята терминология, установленная стандартами в нашей стране. Авторы выражают сердечную благодарность В. П. Сушкову, В. С. Абрамову, В. В. Леонову, О. Р. Абдуллаеву, В. П. Пав-личенко, Т. В. Джахутошвили, А. А. Церелову за помощь и советы, полученные при подготовке книги, а также рецензентам А. М. Юшину и К. М. Макарову и редактору В. И. Бусурину за полезные замечания, сделанные при работе над рукописью. Глава 1 ОБЩИЕ СВЕДЕНИЯ О ПОЛУПРОВОДНИКОВЫХ ЗНАКОСИНТЕЗИРУЮЩИХ ИНДИКАТОРАХ Полупроводниковые индикаторы являются одним из видов знакосинтезирующих индикаторов (ЗСИ), под которыми понимаются приборы, где информация, предназначенная для зрительного восприятия, отображается с помощью одного или совокупности дискретных элементов (ГОСТ 25066-81). ППИ являются активными знакосинтезирующими индикаторами, в которых используется явление инжекционной электролюминесценции. Явление электролюминесценции в полупроводниковых материалах, т. е. излучение света р-n переходом, было впервые обнаружено и исследовано в 1923 г. О. В. Лосевым. Дальнейшие исследования отечественных и зарубежных ученых в 60 — 70-х годах позволили исследовать и определить перечень полупроводниковых материалов, обладающих высокой эффективностью преобразования электрической энергии в световую. Полученные значения светотехнических параметров позволили создать ППИ, пригодные для практического применения. Излучение генерируется либо внутри полупроводникового элемента в одноступенчатом процессе излучательной рекомбинации электронов и дырок, либо в результате более сложных двухступенчатых процессов генерации инфракрасного излучения внутри полупроводникового элемента с последующим возбуждением внешнего слоя антистоксового люминофора. Из-за малого КПД второй способ люминесценции не получил широкого распространения при проектировании полупроводниковых индикаторов. Внешний квантовый выход большинства ППИ [1] изменяется в зависимости от длительности эксплуатации даже при плотностях токов, оговоренных в технических условиях на индикаторы. Сегодня нет четкого понимания физики происходящих рекомби-национных явлений, ответственных за основную долю деградации. Известно, что значительные внутренние напряжения, вызванные примесными включениями легко диффундируемых элементов, вызывают быструю (в течение нескольких часов работы) начальную деградацию. Это особенно заметно у ППИ с высоким квантовым выходом. Уменьшение быстрой деградации достигается разработкой «чистых» (беспримесных) технологий производства полупроводниковых материалов. Средние и длительные по времени процессы деградации вызваны, вероятно, электромиграционными процессами. Суммарный уровень деградации квантового выхода в течение срока службы (25000 ч) по техническим условиям на индикаторы составляет 30 — 50%. Среди различных ЗСИ (жидкокристаллических, электролю-минесцентных, вакуумно-накаливаемых, катодолюминесцентных, газоразрядных и др.) полупроводниковые индикаторы занимают особое место. Это объясняется рядом их преимуществ перед другими видами ЗСИ. Основными из них являются: во-первых, полная конструктивная и технологическая совместимость с интегральными микросхемами (т. е. совместимость управляющих напряжений ППИ с амплитудами логических уровней ИМС) и, во-вторых, возможность выпуска ППИ в виде ограниченного количества унифицированных модулей. Конструктивная и технологическая совместимость ППИ с ИМС позволила повысить интегральную надежность устройств отображения информации за счет применения в них элементной базы, полностью выполненной по полупроводниковой технологии, обеспечить устойчивость к жестким механическим и климатическим воздействиям с практически неограниченной долговечностью. В настоящее время созданы приборы зеленого, желтого, красного цветов свечения, а также индикаторы с управляемым цветом свечения, с возможностью электрической регулировки яркостью свечения, с высоким быстродействием (20 — 100 не), с отсутствием паралакса. ППИ не требуют экранировки и не создают помех, у них отсутствует мерцание изображения. Модульность конструкции полупроводниковых индикаторов обеспечивает возможность их бесшовной стыковки, т. е. без потери шага в одном (в строку) или двух (в экран) измерениях. Модульность исполнения индикаторов гарантирует также высокую степень ремонтопригодности устройств отображения информации. Высокие технические характеристики полупроводниковых индикаторов обеспечили их успешное внедрение в качестве элементов индикации в различных областях народного хозяйства: в приборах индикации и управления технологическими процессами, в радиоэлектронной аппаратуре, в автоматике, в торговле и т. д. Применение ППИ обеспечило создание надежных, малогабаритных устройств отображения информации с широким диапазоном функциональных возможностей. 1.1. КЛАССИФИКАЦИЯ ПОЛУПРОВОДНИКОВЫХ ИНДИКАТОРОВ Полупроводниковые индикаторы, как, впрочем, и индикаторы, основанные на любых других принципах работы, могут быть классифицированы по виду отображаемой информации, по виду информационного поля и по способу управления. Классификация современных полупроводниковых индикаторов по указанным классификационным признакам приведена на рис. 1.1. Единичные индикаторы (распространен также термин «свето-излучающие диоды» -- СИД) состоят из одного элемента отображения и предназначены в основном для представления информации в виде точки или другой геометрической фигуры. Рис. 1.1. Классификация полупроводниковых знакооинтезирующих индикаторов Шкальные индикаторы имеют элементы отображения в виде правильных прямоугольников и предназначены для отображения информации в виде уровней или значений величин. Отдельную группу шкальных индикаторов составляют так называемые линейные формирователи изображения в высоконадежных опто-электронных регистраторах оперативной аэрокосмической информации на фотопленку. Цифровые индикаторы состоят, как правило, из элементов отображения в виде сегментов и предназначены для отображения цифровой информации и отдельных букв алфавита. Буквенно-цифровые индикаторы предназначены для отображения информации в виде букв, цифр, различных знаков. Единичные элементы отображения таких индикаторов сгруппированы по строкам и столбцам. Графические (матричные) индикаторы позволяют собирать модули из элементов экрана различного размера без потери шага. Графические индикаторы предназначены для отображения любой информации. Цифровые и буквенно-цифровые индикаторы бывают одно- и многоразрядные. Под одноразрядным понимается индикатор, имеющий одно знакоместо, т. е. информационное поле индикатора или его часть, необходимая и достаточная для отображения одного знака. Многоразрядный индикатор имеет несколько фиксированных знакомест. Цифровые, буквенно-цифровые, матричные и шкальные индикаторы могут быть без управления и со встроенными схемами управления. Для современных полупроводниковых индикаторов существуют две системы обозначения. Старая система в настоящее время не применяется для вновь разрабатываемых приборов, но, поскольку большое количество разработанных ранее приборов имеют старую систему обозначения, необходимо ее пояснить. Система состоит из букв и цифр. Первый элемент обозначения указывает на вид материала излучателя: К — кремний у приборов широкого применения, 2 — кремний у приборов промышленного применения; А — соединения галлия у приборов широкого применения, 3 — у приборов промышленного применения. Второй элемент обозначения (буква Л) — означает тип излучателя. Третий, четвертый и пятый элементы (цифры от 101 до 299) означают прибор видимого спектра излучения. Шестой элемент (буквы от А до Я) означает деление технологического типа на группы по параметрам. Для всех приборов, кроме единичных, после буквы Л ставится буква С (сборка). Пример обозначения: ЗЛ102А — фосфид-галлиевый единичный индикатор видимого спектра излучения, промышленного применения, технологическая группа А. Старая система обозначения давала мало информации об индикаторе (характере отображаемой информации, цвете свечения, числе разрядов и т. д.), поэтому была разработана новая система обозначения для всех видов знакосинтезирующих индикаторов. Система состоит из восьми элементов (букв и цифр), обозначающих: первый элемент (буква И) — индикатор; второй (буква П) — полупроводниковый; третий — вид индикатора: единичный — Д, цифровой — Ц, буквенно-цифровой — В, шкальный — Т, мнемонический — М, графический (матричный) — Г; четвертый элемент — номер разработки и наличие встроенной схемы управления или ее отсутствие (от 1 до 69 — без встроенного управления, от 70 до 99 — со встроенным управлением). Пятый элемент обозначения указывает классификационный параметр внутри данного типа (буквы от А до Я, кроме О, 3, Ы, Ь, Ч, Ш). Шестым элементом обозначения является дробь, в числителе которой указано количество разрядов, в знаменателе для цифровых (сегментных) — количество сегментов, для буквенно-цифровых и матричных — произведение числа элементов в строке на число элементов в столбце. Для мнемонических и шкальных индикаторов в знаменателе указывается число элементов. Седьмой элемент обозначает цвет свечения индикатора: К — красный, Л — зеленый, С — синий, Ж — желтый. Р — оранжевый, Г — голубой, КЛ — двухцветный красно-зеленый. Последний, восьмой, элемент обозначения указывает на модификацию бескорпусных индикаторов. (Для бескорпусных ППИ наиболее распространена модификация 5 — с контактными площадками без кристаллодержателя и выводов). Для индикаторов широкого применения перед первым элементом обозначения ставится буква К. Примеры обозначения: ИПД04А-К — индикатор полупроводниковый, единичный промышленного применения, номер разработки 4, классификационный параметр А, цвет свечения — красный; ИПЦ01А-1/7К — индикатор полупроводниковый цифровой промышленного применения, номер разработки 1, без встроенного управления, классификационный параметр А, одноразрядный, семисегментный, красного свечения; КИПГОЗА-8Х8Л — индикатор широкого применения полупроводниковый, графический, номер разработки 3, технологическая группа А, число элементов 8 в строке и 8 в столбце (64 элемента), зеленого свечения; ИПТ06Е-8Ж - — индикатор промышленного применения полупроводниковый, шкальный, номер разработки 6, число элементов 8, желтого свечения; ИПВ70А-4/5Х7К — индикатор промышленного применения полупроводниковый, буквенно-цифровой со встроенным управлением, номер разработки 70, технологическая группа А, четы- рехразрядный с числом элементов 5 в строке и 7 в столбце (35 элементов), красного свечения. Вопросам конструкции и технологии производства ППИ посвящен ряд фундаментальных работ [1 — 4], поэтому в следующих параграфах будут рассмотрены только те вопросы, которые необходимы для лучшего понимания последующего материала. 1.1.1. Единичные полупроводниковые индикаторы Современные единичные индикаторы по своему конструктивному исполнению можно разделить на три группы: в бескорпусном исполнении, с полимерной герметизацией, в металлостек-лянных герметических корпусах. Бескорпусные единичные индикаторы, самые малочисленные по номенклатуре, конструктивно выполнены в виде отдельного кристалла без какого-либо корпуса. Приборы находят применение в герметизированной аппаратуре, а также как источник излучения в некоторых видах оптоэлектронных приборов. Широкого распространения бсскорпусные ППИ в системах индикации не получили. Единичные индикаторы с полимерной герметизацией — самые массовые типы ППИ. Широкое распространение этих индикаторов объясняется тем, что они имеют низкую стоимость, поскольку производство их легко поддается автоматизации, высокие светотехнические параметры, достигнутые благодаря перераспределению прохождения света в корпусе, широкий диапазон диаграмм направленности. Полимерная герметизация легко позволяет создавать приборы с самой разнообразной формой информационного поля (круглые, прямоугольные, треугольные, квадратные). Индикаторы с полимерной герметизацией обладают высокой устойчивостью к внешним механическим воздействиям. Недостатками этих индикаторов является их критичность к воздействию влаги и циклическому изменению температуры окружающей среды. Среди единичных индикаторов имеются приборы с переменным цветом свечения (красный-зеленый) типов ЗЛС331А, АЛС331А. Первый прибор выполнен в герметичном корпусе, второй — в полимерном. Оба прибора разработаны на основе GaP на одном кристалле с двумя переходами [4]. Изменяя проходящий прямой ток, можно получить промежуточные цвета свечения. Индикаторы в металлостеклянных герметичных корпусах применяются в промышленной аппаратуре там, где требуется высокая надежность и устойчивость к внешним климатическим и механическим воздействиям. Индикаторы изготовлены в специальном металлостеклянном корпусе, сверху прибор герметизирован стеклянным окном, на которое нанесена полимерная полусферическая линза со светорассеивающим наполнителем. Среди индикаторов этой группы интерес представляет прибор ЗЛ360А, Б. Прибор изготовлен в стандартном металлостеклянном корпусе. Источником видимого излучения является антистоксовый люминофор, представляющий собой сложное соединение фторидов редкоземельных элементов, покрывающий источник ИК излучения на основе GaAs. Невидимое излучение ИК диода возбуждает люминофор, который излучает видимый зеленый свет. Преимущества рассматриваемых приборов перед обычными в следующем: чистый зеленый цвет, не меняющийся в процессе длительной эксплуатации и при изменении температур, малое падение напряжения (1,2 — 1,7 В), примерно квадратичная зависимость силы света от тока. Кроме того, прибор является также источником ИК-излучения с мощностью 0,2 мВт, что может найти применение в схемотехнике. Недостатками таких приборов являются сложность технологии изготовления и низкий КПД. |
Программа учебной дисциплины «Технологические маршруты синтеза методом... Программа предназначена для специалистов в области производства полупроводниковых наногетероструктур предприятий, специализирующих... |
Инструкция по созданию и импорту пользовательских индикаторов 3 библиотека... Открыть редактор индикаторов (Форма «График»\Кнопка «Индикаторы»\вкладка «Пользовательские») |
||
Техническое задание на поставку биотестов и химических индикаторов... Поставка биотестов и химических индикаторов для контроля режимов стерилизации и дезинфекции (в паровых, воздушных стерилизаторах... |
Инструкция по эксплуатации импульсного источника питания Использование в составе драйвера новейших схемотехнических решений и высококачественной элементной базы позволяет обеспечить кпд... |
||
Урок по химии 8 класс: «Кислоты» «Техника безопасности при работе с кислотами», таблица «Изменение окраски индикаторов в зависимости от среды» |
Сроки и условия поставки Козлова Петра Ивановича, действующего на основании Протокола заседания Совета директоров акционерного общества «Завод полупроводниковых... |
||
Применение методов активного обучения в образовательном процессе вуза В данной статье рассматривается применение активных методов обучения, опыт использования которого дает возможность решать ряд труднодостижимых... |
Минтранс россии приказ Оон, на применение отгрузочного наименования и классификационного кода опасных веществ и изделий, а также на применение тары при... |
||
Содержание электронные часы 2 Цвет индикаторов красный (модификация –К), зеленый (модификация –З), синий (модификация –С) |
Закупка индикаторов на 2 полугодие 2016 года Химический индикатор контроля критических параметров паровой стерилизации в камере стерилизатора снаружи стерилизуемых упаковок,... |
||
Руководство по эксплуатации и установке полупроводниковых светодиодных ламп серии «asp-led 5» Вся продукция под маркой asp, является оригинальной и не нуждается в специальной маркировке, подтверждающей истинную принадлежность... |
Гну краснодарский ниви россельхозакадемии научно-производственное... ... |
||
Инструкция по применению индикаторов химических одноразового применения для контроля воздушной ... |
Применение акустико-эмиссионного метода для выявления дефектов сварного шва в процессе сварки При этом реализуется возможность определения с высокой точностью координат дефектов и их оперативного исправления в процессе сварки... |
||
Руководство по эксплуатации ос03 Руководство по эксплуатации предназначено для изучения принципа работы, правильного использования, хранения и технического обслуживания... |
Индикаторы давления Инструкция по эксплуатации предназначено для ознакомления с техническими характеристиками, режимами эксплуатации, конструкцией, правилами... |
Поиск |