Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя


Скачать 4.79 Mb.
Название Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя
страница 2/27
Тип Реферат
rykovodstvo.ru > Руководство эксплуатация > Реферат
1   2   3   4   5   6   7   8   9   ...   27
Глава 1

От электронов к электронике

В этой главе...

> Разъяснение роли электронов, проводников и напряжения. Вопросы генерации электричества

> Некоторые электронные компоненты

> Соединение отдельных компонентов в электрическую схему

> Знакомство с некоторыми инструментами электроники

> Единицы измерения

> Закон Ома

Когда вы включаете поутру кофеварку, вы используете электричество. Когда вы щелкаете кнопкой на телевизоре, чтобы просмотреть повторный показ сериала Секс и город, — опять же, вы снова так или иначе задействуете электричество.

Поскольку вы используете электричество и электронные устройства постоянно, вам, наконец, становится любопытно попробовать собрать какую-то безделушку самому (или самой). Отлично. Но перед тем, как вы сможете окунуться в мир проводов и батарей, не помешает узнать, откуда взялся корень электро- в словах электричество и электроника.

В этой главе вы узнаете все о том, как электроны служат для образования электричества, и как обуздать это электричество в целях освоения основ электроники. Вы также познакомитесь с инструментами и компонентами, с которыми позже будете забавляться в главах 14 и 15.
Что же такое электричество?

Как и множество вещей в нашей жизни, электричество сложнее, чем может показаться на первый взгляд. Должно одновременно совпасть множество условий, чтобы между вашей рукой и железной ручкой двери проскочила искра, или появилась энергия, чтобы можно было включить новейший суперкомпьютер. Для понимания того, как работает электричество, будет полезно разбить столь общий вопрос на частные.
Что такое электрон

Электрон представляет собой один из основополагающих "кирпичиков", составляющих природу. Электроны "приятельствуют" с другими такими "кирпичиками" — протонами. Как первые, так и вторые очень малы, и содержатся в..., ну, в общем, во всем на свете. Мельчайшая частичка пыли одержит миллионы миллионов электронов и протонов, так что можете представить, сколько же их содержится в каком-нибудь борце сумо.

Электроны и протоны имеют равные, но противоположные по знаку электрические заряды: у электронов отрицательные, а у протонов — положительные. Противоположные заряды всегда притягиваются друг к другу. Вы можете продемонстрировать самому себе подобное притяжение, сблизив пару магнитов. Если ближайшие концы магнитов представляют собой разные полюса, то они моментально встретятся и приклеятся друг к другу. Если же концы будут с одним и тем же по знаку полюсом, то они отшатнутся друг от друга, как политики после горячих телевизионных дебатов. Таким образом, поскольку электроны и протоны имеют разные знаки, они притягиваются друг к другу. Это притяжение действует, как клей, на уровне микромира, скрепляя собой всю материю Вселенной.

Хотя протоны относительно статичны, об электронах подобного не скажешь — они весьма ветрены и не собираются сидеть на одном месте. Они могут — и чаще всего так и делают — перемещаться между объектами. Например, пройтись в сухую погоду по ковру и остановиться на стальной дверной ручке; электроны, бегущие между этой ручкой и вашей ладонью, вызывают искру, которую вы сможете увидеть лишь иногда, но, определенно, почувствуете всегда. Молния тоже состоит из цепочки движущихся электронов — на этот раз они перемещаются между тучами и землей. Все это примеры неприрученной, дикой электрической энергии.
Перемещение электронов по проводникам

Как перебегают электроны из одного места в другое? Ответ на этот вопрос приоткроет еще одну частицу электрической мозаики. Чтобы перемещаться, электроны используют так называемые проводники. Таким образом, электричество представляет собой не что иное, как направленное движение электронов в проводнике.

В качестве проводников может выступать множество материалов, но одни из них предпочтительнее других. Электроны передвигаются значительно легче по металлам, чем по пластику. Вообще, хотя в пластмассе они и будут перемещаться вокруг своих приятелей протонов, им куда приятнее сидеть дома, чем куда-то бежать. Но в металле электроны вольны двигаться, куда захотят. Можно провести аналогию между свободными электронами в металле и камешками, брошенными на лед. Электроны скользят сквозь металл, как по льду. А вот пластик — изолятор — больше напоминает песок: камни вряд ли сдвинутся далеко от того места, куда упали, как и электроны внутри пластмассы.

Так какие же материалы представляют собой хорошие проводники, а какие — хорошие изоляторы? Обычно в качестве проводников используют медь и алюминий (чаще — медь). А в качестве изоляторов, как правило, выступают пластмасса и стекло.

Мерой способности электронов перемещаться по материалу служит сопротивление. Медный провод большого диаметра имеет меньшее сопротивление потоку электронов, чем провод из той же меди, но меньшего диаметра. Вам стоит как следует уяснить для себя смысл сопротивления, потому что каждый проект, связанный с электроникой, включает в себя резисторы. Резисторами называют элементы с определенным сопротивлением, которое помогает контролировать поток электронов в проводниках.
Напряжение - движущая сила

В предыдущих разделах пояснялось, как электроны двигаются и почему в проводниках они передвигаются более свободно. Но для того, чтобы они перемещались от одного места к другому, нужно какое-то воздействие. Эта сила, действующая между зарядами с разными знаками, называется электродвижущей силой, или напряжением. Отрицательные электроны двигаются к положительному заряду посредством проводника.

Помните, как Бенджамин Франклин запускал в шторм воздушного змея? Электрическая искра, пробежавшая по змею, помогла ученому сообразить, как двигается электрический ток. В этом случае электроны прошли по мокрому от дождя шнуру, который служил проводником. Если попробовать проделать тот же фокус с искрой, но при сухом шнуре, то у вас не получится ничего даже близко похожего. Напряжение представляет собой разность электрических потенциалов между отрицательно заряженными тучами и землей, которая и гонит электроны вниз по шнуру.
Ни за что не пробуйте повторить эксперимент Франклина сами! Запуская воздушных змеев в грозу, вы играете с молнией, которая может в мгновение ока превратить вас в кусочек тоста.
Что происходит с протонами?

Вы могли обратить внимание на то. что мы практически ничего не говорим о протонах. Хотя они, как и электроны, представляют собой элементарные заряженные частицы, только с положительным зарядом, мы фокусируем свое внимание на электронах прежде всего потому, что они значительно более подвижны, чем протоны. В большинстве случаев именно электроны передвигаются по проводнику, и именно их отрицательный заряд представляет собой электричество. Однако в некоторых случаях, например, в батареях, положительные заряды также перемещаются по проводнику. Для объяснения этого процесса вы должны узнать, что такое ионы, атомы, электрохимические ротации и, возможно, даже рассмотреть гипотезу о «дырках», широко используемую в полупроводниковой физике. Однако, поскольку для выполнения задач, с которыми вы столкнетесь в этой книге (да и в большинстве любительских проектов тоже), вам необязательно владеть теорией в столь полном объёме, мы оставим более сложные выкладки Эйнштейну и займемся поближе одними электронами.

Обычный ток в отличие от реального тока

Первые исследователи полагали, что электрический ток представляет собой движение положительных зарядов, поэтому они описали явление тока как поток положительно заряженных частиц к отрицательному потенциалу. Только значительно позднее эксперименты доказали само существование электронов и определили, что это они двигаются от отрицательного к положительному потенциалу. Однако традиция осталась в силе, и с тех пор движение электрического тока на всех схемах показывается стрелками в противоположном реальному потоку электронов направлении. Поэтому обычный ток представляет собой (условное) движение заряженных частиц от положительного к отрицательному потенциалу и этим противоположен току реальному.
Важная объединяющая теория: электроны, проводники и напряжение

Предположим, у вас есть отрезок провода (проводник), и вы хотите присоединить его к положительному выводу батареи, а другой его конец — к ее отрицательному выводу. В этом случае электроны потекут от отрицательного потенциала к положительному. Этот поток электронов и является электрическим током. То есть соединение в одно целое электронов, проводника и напряжения позволяет получить электрический ток в той форме, которую можно так или иначе использовать.

Для того чтобы помочь вам описать то, как тип проводника и величина напряжения влияют на электрический ток, мы сочли удобным провести аналогию с тем, как давление воды и диаметр трубы влияют на поток воды по этой самой, трубе.
> Увеличение давления воды заставляет протекать по трубе большее ее количество. Это явление аналогично увеличению напряжения, которое приводит к усилению электрического тока в связи с тем, что большее количество электронов принимает участие в направленном движении.

> Использование трубы большего диаметра также позволяет пропустить по трубе больше воды при одном и том же давлении. Этот эффект можно сравнить с использованием провода большего диаметра, который позволяет электронам течь без препятствий при одном и том же напряжении, опять же приводя к большему электрическому току.
Откуда берётся электричество?

Итак, мы уже знаем, что электричество появляется тогда, когда напряжение в проводнике создает электрический ток. Однако где же берется нужная энергия, когда вы соединяете отрезком провода, выключатель и электрическую лампочку?

Существует множество различных источников электричества— от старых добрых фокусов типа "пройтись-по-ковру-и-дотронуться-до-дверной-ручки" и до современных солнечных батарей, но, чтобы упростить изучение данного вопроса, мы рассмотрим только три их типа, которые вы в подавляющем большинстве случаев и будете применять на практике: батареи, обычные бытовые розетки и солнечные батареи.
Батареи: когда другие уже устали, они все еще полны энергии

Для генерации положительного напряжения на одном выводе электрической батареи и отрицательного — на другом используется процесс электрохимических реакций. В батарее заряд создается помещением двух разных металлов в определенный тип химического вещества. Поскольку перед вами отнюдь не учебник по химии, мы не будем углубляться в особенности работы батарей — просто поверьте, что именно такая структура служит для получения напряжения.

Батареи имеют два вывода (выводами называются металлические площадки на концах батареи, к которым подключаются провода). Не сомневаемся, что вы часто используете батареи для питания электричеством переносных устройств, например фонарика. В фонаре от лампочки отходит два проводка, которые подключены к соответствующим выводам батареи. Что же происходит дальше? А вот что.
> Напряжение толкает электроны через провод от отрицательного вывода батареи к положительному.

> Электроны, движущиеся по проводу, проходят через нить накала электрической лампочки и заставляют ее светиться.
Благодаря тому, что электроны двигаются только в одном направлении, от отрицательного вывода батареи к положительному, электрический ток, генерируемый батареей, называется постоянным током (на схемах часто обозначается DC — direct current). Он является противоположностью переменному току, который мы рассмотрим в следующем разделе, где речь пойдет об электрических розетках.
Проводки, идущие от лампочки, должны быть подключены к обоим выводам батареи. Это позволяет электронам двигаться от одного из них к другому, проходя через лампочку. Если не создать электронам подобную петлю из проводников, то они не смогут течь вообще.
Тепличные условия - электрические розетки

Когда вы включаете лампу в электрическую розетку на стене, вы используете то электричество, которое выработала электростанция. Последняя может быть расположена на дамбе на реке или получать энергию от другого источника — например, атомной электростанции. Чаще всего, однако, используют процесс сжигания угля или природного газа. Направление, в котором текут электроны, меняется 100 раз в секунду, т.е. они совершают однонаправленное движение 50 раз в секунду. Такое изменение потока электронов называется переменным током (АС— alternative current).

Изменение направления тока с возвращением к первоначальному направлению представляет собой цикл, или период. Количество таких периодов переменного тока в секунду называется частотой и измеряется в специальных единицах — герцах (Гц). В странах Европы используется частота, равная 50 Гц, а в Северной Америке — 60 Гц, т.е. электроны меняют направление своего движения 120 раз в секунду.

Электричество, вырабатываемое гидроэлектростанцией, получается при вращении водой турбины с намотанным проводом внутри гигантского магнита. Одним из свойств взаимодействия проводников и магнитов является тот факт, что в присутствии магнита при движении проводника, в последнем возникает наведенный поток электронов. Сначала эти электроны двигаются в одном направлении, а потом, когда петля проводника поворачивается на 180 градусов, магнит заставляет электроны идти в обратном направлении. Подобное вращение и создает электрический ток.

Включить вилку в электрическую розетку весьма просто, но в большинстве случаев для ваших проектов понадобится постоянный, а не переменный ток. Если вы хотите пользоваться розетками, то вам нужно будет преобразовывать ток из переменного в постоянный. Это легко сделать, если имеется источник питания. Источником питания является, к примеру, зарядное устройство для вашего мобильного телефона: оно потребляет переменный ток и выдает постоянный, который служит для запитки аккумуляторов, подробнее о разных источниках питания вы сможете узнать в главе 3.
Безопасность, безопасность и еще раз безопасность! Важно уяснить и решить для себя в каждом конкретном случае — действительно ли вы хотите получать ток из настенной розетки? Использование батарей похоже на игры с милым домашним котенком, а питание от электричества в розетках — на приручение голодного льва. В первом случае вам грозят разве что поцарапанные руки, во втором же вы рискуете попасть на обед целиком. Если вам действительно столь необходимо подключиться к розетке, убедитесь, что понимаете, что делаете. Более подробные советы по безопасности приведены в главе 2.
Что появилось раньше: напряжение или ток

Электрические батареи являются источниками напряжения, которое создает электрический ток. В генераторах гидроэлектростанции возникающий ток создает напряжение. Что же появляется раньше? Этот вопрос напоминает другой известный философский спор — что появилось раньше: курица или яйцо? Напряжение, ток и проводники возможны только одноименно. Если к проводнику будет приложено напряжение, возникнет ток. Если этот ток течет по проводнику, значит на концах последнего появляется напряжение. Короче: не ломайте себе голову над подобными вопросами
Простой выбор: переменный ток или постоянный

Какая разница, какой ток использовать: переменный или постоянный? Оказывается, большая! Переменный ток дешевле получать и пересылать по линиям передачи, чем постоянный. Именно поэтому бытовое электричество обычно работает от переменного тока: всевозможные лампы, нагреватели и тому подобное.
Однако для проектов, предлагаемых в этой книге, значительно удобнее применять постоянный ток (как и во многих других случаях в электронике). Переменный ток несколько сложнее контролировать, поскольку неизвестно, в каком направлении он течет в каждый конкретный момент. Эта разница похожа из сложности ГАИ во время регулирования двухсторонней трассы с шестиполосным движением по сравнению с переулком с односторонним движением. Из этих соображений в нашей книге в большинстве схем будет использоваться именно постоянный ток.
Солнечные батареи

Солнечные батареи представляют собой полупроводниковые приборы. Как и обычные батареи, они имеют проводки, подключенные к их противоположным выводам. Свет, попадающий на солнечную батарею, заставляет протекать в ней электрический ток. (Такая реакция на освещение является неотъемлемым свойством некоторых веществ и подробнее обсуждается во врезке "Причуды полупроводников".) После этого полученный ток течет через провода к устройству: к микрокалькулятору или к садовому светильнику около вашей входной двери.

Пользуясь калькулятором на солнечных батарейках, вы можете продемонстрировать окружающим, что работа устройства целиком зависит от количества света, попадающего на солнечные элементы. Включите калькулятор и наберите на клавиатуре несколько цифр (лучше что-нибудь побольше — на весь дисплей — например, сумму подоходного налога за прошлый год). Теперь закройте пальцем окошко солнечных батарей (оно обычно выглядит как прямоугольничек, закрытый прозрачным пластиком). После того как вы перекроете доступ свету, цифры на дисплее начнут блекнуть. Снимите палец с окошка, и они станут контрастными вновь. Следовательно, устройства, питающиеся от солнечных элементов, нуждаются в хорошей освещенности.
Где применяются электрические компоненты?

Электрические компоненты являются обязательной частью всех ваших электронных проектов. Вроде бы достаточно просто? Естественно, вы должны использовать какие-то средства для того, чтобы контролировать поток электричества, например как у реостата, который регулирует яркость освещения в комнате. Электричество просто-напросто запитывает энергией потребителей, таких как, скажем, акустические колонки. Другие же компоненты, которые называются сенсорами, служат для детектирования чего-либо (например света или тепла) и последующей генерации тока для ответной реакции, например включения сигнализации.

В этом разделе вы познакомитесь только с основными электрическими компонентами; главы же 4 и 5 содержат намного более обширный материал.
Контроль над электричеством

Электрические компоненты, или, как их еще называют, радиоэлементы, могут служить для того, чтобы контролировать электричество. Например, ключ соединяет электрическую лампочку с источником тока. Для того, чтобы разъединить их и, таким образом, выключить лампочку, нужно просто переместить ключ, создав разрыв цепи.

Можно упомянуть и другие элементы, служащие для контроля электричества: резисторы, конденсаторы, диоды, транзисторы. Намного больше информации вы сможете найти в главе 4.
Полный контроль над электричеством (ИС)

Интегральные микросхемы (ИМС, или просто — ИС) представляют собой компоненты, содержащие целую группу миниатюрных компонентов (резисторов, транзисторов, диодов, о которых вы прочтете в главе 4) в одном корпусе, который ненамного больше по размерам, чем один обычный радиоэлемент. Благодаря тому, что каждая ИС включает множество других компонентов, она одна может делать ту же работу, что и сразу несколько индивидуальных элементов.
Причуды полупроводников

Транзисторы, диоды, светоизлучающие диоды (СИД), интегральные схемы и другие электронные устройства состоят из полупроводников, а не проводников. Полупроводником называется материал, такой как кремний, свойства которого имеют общие черты как с проводниками, так и с изоляторами. Кремний — довольно важная штука в электронике. Фактически его именем даже назнали целую долину в Калифорнии. В свободном состоянии кремний проводит ток очень слабо, но при добавлении других веществ, например боpa и фосфора, становится проводником. Если добавляется фосфор, то кремний принимает форму полупроводника так называемого "n"-типа, если же используется бор, то он становится полупроводником "р"-типа. Полупроводник "n"-типа имеет больше электронов, чем обычный полупроводник, а полупроводник "р"-типа, соответственно, меньше.

Когда области полупроводника, сод ержащие бор и фосфор, располагаются в кремнии рядом друг с другом, получается так называемый "рn"-переход. В таком переходе ток течет только в одном направлении. Диоды — элементы, которые служат для преобразований переменного тока в постоянный с помощью течения тока, проходящего в одним напранлении, — как раз и представляют собой сегмент, состоящий из "pn"-перехода. Под воздействием света "pn"-переход генерирует электрический ток; это свойство используется в солнечных батареях. С другой стороны, если пропустить через переход электрический ток, то выделится свет, так работают светоизлучающие диоды (СИД).

В транзисторах используются переходы с тремя прилегающими областями с добавленными примесями. К примеру, одна с фосфором, вторая с бором, третья снова с фосфором, т.е. получается структура типа "npn". Ток в любом случае подастся на среднюю область(так называемая база). В большинстве электронных проектов вы будете работать с компонентами, сделанными из полупроводников, такими как транзисторы, диоды и интегральные схемы. Именно полупроводниковая технология позволила значительно уменьшить размеры электронных устройств и создать, в частности, карманные компьютеры и радиоприемники.
Примером интегральной схемы может служить аудиоусилитель. Такой усилитель можно использовать, чтобы увеличить мощность аудиосигнала. Например, если у вас есть микрофон, его выходной сигнал проходит через аудиоусилитель и становится достаточно мощным для того, чтобы быть услышанным из акустических колонок.

Есть еще один тип ИС, широко использующийся в электронных проектах: микроконтроллер. Это такой тип электронной ИС, который может быть запрограммирован для управления сложными устройствами, например, роботами. Мы дойдем до обсуждения микроконтроллеров в главе 13.
Детектирование с помощью сенсоров

Некоторые электрические компоненты генерируют ток, если подвергнуть их воздействию света или звука. Полученный ток можно использовать совместно с некоторыми компонентами, упомянутыми выше, для того, чтобы контролировать электричество,

включать или выключать различные устройства, например электрические лампы или громкоговорители.

Детекторы движения, сенсоры освещенности, микрофоны и датчики температуры — все генерируют электрический сигнал в ответ на какое-либо воздействие (соответственно движение, свет, звук и температуру). Эти сигналы могут затем использоваться для включения или выключения других устройств. Высокий уровень сигнала может, скажем, включать что-то, а низкий — выключать. К примеру, когда к вашей двери подходит очередной рекламный агент, детектор движения может включать свет (хотя лучше — пожарную сигнализацию).
На рис. 1.1 показаны диаграммы некоторых сигналов, с которыми вам придется часто встречаться.
> Сигнал постоянного тока с амплитудой +5 В: высокий уровень.

> Сигнал постоянного тока с амплитудой 0 В: низкий уровень.

> Прямоугольные импульсы (меандр) постоянного тока с амплитудой 0-5 В: сигнал осциллятора (устройства, генерирующего колебания попеременно высокого и низкого уровней); если подать такой сигнал на электрическую лампу, то она будет постоянно мигать.

> Синусоидальный сигнал переменного тока с амплитудой -5...+5В. Такой сигнал приходит от микрофона, который генерирует переменный ток, используемый в качестве входного сигнала, например, усилителя. Микрофон генерирует форму сигнала, изображенную на рис. 1.1, когда на него воздействует звук камертона. Обратите внимание на то, что переходы от -5 до +5 В для синусоидального сигнала, изображенного на рисунке, постепенны, в то время как у прямоугольного сигнала они предельно резкие.

Более подробно о различных типах сенсоров вы сможете узнать в главе 5.
Питание

Электричество может подпитывать компоненты, чтобы они генерировали свет, тепло, звук, совершали движения и так далее. К примеру, электрический ток, подаваемый на двигатель постоянного тока, заставляет крутиться вал последнего, а заодно и детали, механически связанные с валом.

Вы можете запитать электричеством акустические колонки, электрические лампы, светодиоды, двигатели. В главах 4 и 5 будет рассказано об этих и других типах электрических компонентов.
Когда электричество становится электроникой

Если нужно использовать электричество, чтобы заработало какое-либо устройство, например, магнитофон, то это значит, что вы окунулись в мир электроники. Несомненно, вам не терпится создать собственную электронную поделку. В этом разделе будут описаны основы того, как взаимодействуют между собой электроника и ее устройства.

Создание простой схемы

Возьмем батарейки, резистор, светодиод и кусочки проводов и соберем их вместе — и вот перед вами простая электронная схема. Вот что представляет собой схема: провода, соединяющие компоненты таким образом, что через них ток течет и возвращается обратно к источнику питания.

На рис. 1.2 показана простейшая схема. Части схемы (также называемые компонентами) размещены на так называемой макетной плате и соединены между собой при помощи проводов. Принцип работы макетной платы, вкратце, таков: на ней есть отверстия, в которые удобно вставлять электронные компоненты для построения простых схем. Если вы останетесь удовлетворены результатом своей работы, то затем сможете перенести схему на печатную плату (об особенностях построения схем на макетных платах см. главу 11).


На рис. 1.2 показаны провода, присоединенные к обоим выводам батареи. Такое подключение позволяет току вытекать из батареи, проходить через светодиод и другие компоненты (в данном случае — резистор) и возвращаться в батарею, замыкая, таким образом, цепь с током. Схему можно довести до логического конца, присоединив ее к металлическому шасси, например к металлическому корпусу магнитофона. Такое соединение называется заземлением или, просто, землей и используется в качестве опорной точки для всех напряжений схемы. Заземление может как присоединяться к настоящей земле, так и быть отделено от нее, но в любом случае его потенциал служит точкой, от которой отсчитываются величины всех напряжений схемы. Более подробно вопросы заземления будут обсуждаться в главе 6.

Реальную схему можно представить в виде схемы принципиальной. Принципиальная схема представляет собой чертеж, на котором показано, как соединены между собой компоненты. Посмотрите на принципиальную схему, изображенную на рис. 1.3 и соответствующую той поделке, которую мы собрали ранее на рис. 1.2. Вы можете обратиться к главе 6, чтобы изучить множество других схем.
Что делать дальше

Если вы уже жаждете построить простую схему, чтобы проверить свои знания на практике, обратитесь к главе 14. К примеру, вы можете собрать с помощью макетной платы схему, которая генерирует сигнал тревоги, когда в комнате включается свет. Конструирование подобных вещиц — приятный способ познакомиться поближе с электроникой. Однако не стоит сразу прыгать в омут схемотехники, если вы совсем зеленый новичок — для начала прочтите еще несколько глав этой книги, особенно главу 2, в которой речь пойдет о безопасности.

После того как вы соберете парочку учебных проектов, представленных в главе 11, и как следует набьете руку, вы сможете перейти к главе 15, где вам предстоит серьезная работа — вплоть до сборки робота. Эти проекты занимают куда больше времени, но и результат оправдывает себя на все сто.

После того как вы поднатореете на проектах из этой книги, вы сможете самостоятельно двигаться дальше. Одним из мест, где всегда можно черпать идеи, является, конечно, Интернет. Мы порекомендуем вам, прежде всего, два сайта: discovercircuits. com и electronics-lab.com.
По ходу дела знакомимся с инструментами

Одной из самых замечательных вещей в электронном конструировании является то, что вам волей-неволей приходится иметь дело с какими-то новыми инструментами и электронными компонентами, чтобы посмотреть, что же из них можно собрать. Вы будете использовать одни инструменты, чтобы соединять компоненты схем, и другие, чтобы контролировать их работу.
Инструменты для конструирования

Наверняка вам будет приятно услышать, что для начала нужно не так уж много инструментов. Для того чтобы приступить к сборке проектов, приведенных в главе 14, вам понадобятся кусачки, утконосые плоскогубцы, щипцы для зачистки проводов и пара отверток.

Если же вы разрабатываете уже конечный вариант схемы, то можете добавить к этому списку паяльник для соединения элементов между собой. Выбор паяльника мы обсудим в главе 8.
В процессе работы, несомненно, вам потребуются и другие инструменты, которые было бы неплохо иметь под рукой. Возможно, вам пригодится магнит, чтобы вытаскивать винты и прочую мелочь из всяких труднодоступных щелей, куда они непременно попадут. Смотрите главу 3, где подробно описана комплектация рабочего места радиолюбителя.
Измерительные инструменты

При построении схемы и, тем более, при проверке ее работоспособности совершенно необходимо проводить измерения, чтобы понять— действительно ли схема работает, как запланировано, все ли собрано верно. Среди этих инструментов прежде всего следует обратить внимание на мультиметр, осциллограф и логический пробник. Все они подробно описаны в главах 9 и 10.

А пока мы уделим всего минуту, чтобы подсказать, как нужно использовать мультиметр: по той простой причине, что это первая вещь, которую вы должны купить и, возможно, даже единственная, без которой вам никак не обойтись.

Скажем, вы собрали схему и впервые включили ее. Что же делать, если вдруг она не работает? С помощью мультиметра вы легко найдете часть схемы, которая вызвала проблему. Этим универсальным прибором вы можете измерять напряжение, сопротивление и ток в различных точках схемы. К примеру, если в одной части схемы напряжение оказалось равным 5 Вольт, а в другой неожиданно упало до 0 Вольт, то логично будет предположить, что проблема заключается где-то в участке схемы между этими двумя точками. Вы также можете проверить (но только после отключения схемы от источника питания!) обрыв проводов или испорченные детали между этими двумя точками.
Перед тем как проверять схему на функционирование, не забудьте прочесть главу 2 по безопасности при работе с электричеством, иначе вы можете легко навредить себе или вашему будущему устройству.
Удивительный мир величин

Для того чтобы понять результаты полученных измерений, сперва необходимо знать единицы измерения электрических параметров и меры их величин. В следующем разделе мы с вами пройдем элементарные основы курса метрологии.
Единицы измерения в электронике

Единицы измерения служат для количественного определения какой-либо физической величины. К примеру, покупая яблоки, вы измеряете их вес в килограммах. Аналогично мультиметр измеряет сопротивление элементов в омах, напряжение — в вольтах, а ток — в амперах.

В табл. 1.1 показаны общепринятые единицы измерения и их аббревиатуры для физических величин, которые используются в электронике.
Таблица 1.1. Единицы измерения, используемые в электронике

Физическая

величина

Аббревиатура

Единицы

измерения

Символ единиц

измерения

Компонент

Сопротивление

R

ом

Ом, Ω

Резистор

Емкость

С

фарад

Ф

Конденсатор

Индуктивность

L

генри

Гн

Катушка индуктивности

Напряжение

U (V или Е)

вольт

В




Ток

I

ампер

А




Мощность

Р

ватт

Вт




Частота

f

герц

Гц





Переход к большим или меньшим величинам

При измерении веса яблок очень даже можно столкнуться с малым количеством яблока (или его кусочка), а можно измерять и центнерами, не так ли? Диапазон измерения физических величин в электронике еще шире. В одной схеме вы можете иметь сопротивление в миллионы ом, тогда как в другой протекающий ток будет меньше одной тысячной ампера. Говоря о подобных величинах — как громадных, так и предельно малых, — приходится иметь дело со специальной терминологией.

Чтобы показывать очень большие и очень малые числа, в электронике применяют специальные префиксы, или приставки, и экспоненциальное представление. В табл. 1.2 показаны самые широко используемые префиксы и тип записи числовых величин.

Таблица 1.2. Приставки, используемые в электронике

Число

Название

Экспоненциальное представление

Префикс

Аббревиатура

1000000000

1 миллиард

109

Гига

Г

1000000

1 миллион

106

Мега

м

1000

1 тысяча

103

кило

к

100

1 сотня

102







10

1 десяток

101







1

один

100







0,1

1 десятая

10-1







0,01

1 сотая

10-2







0,001

1 тысячная

10-3

милли

м

0,000001

1 миллионная

10-6

микро

мк

0,000000001

1 миллиардная

10-9

нано

н

0,000000000001

1триллионная

10-12

пико

п


Как же правильно прочитать число, записанное как 106 или 10-6? Экспоненциальное представление представляет собой наиболее удобный способ указания того, сколько нулей нужно добавить к числу в десятичной системе счисления, т.е. основанной на степени числа 10. Например, верхний индекс "6" в записи 106 означает, что точка, разделяющая целую и дробную части числа, должна находиться на шесть разрядов правее, а в записи 10-6 — что эту точку нужно сдвинуть на шесть разрядов левее. Таким образом, в числе 1 х 106 разделитель разрядов сдвигается на шесть мест вправо, и мы получаем в результате число 1 000 000 (1 миллион). В числе же 1 х 10-6 разделитель разрядов сдвигается на столько же мест влево, и результатом является 0,000001, или одна миллионная. 3,21 х 104 можно записать, сдвинув запятую на 4 знака вправо: 32100.
Префиксы + единицы измерения = ?

В предыдущих абзацах вы увидели как для обозначения физических величин и единиц их измерения используются аббревиатуры. В этом разделе мы научимся объединять их и использовать очень краткую запись. Например, ток 5 миллиампер можно записать в виде 5 мА, а частоту 3 мегагерца — как 3 МГц.

Кроме того, так же, как при измерении яблок удобнее всего пользоваться килограммами, а при строительстве загородного офиса большой компании вес стальных конструкций определенно будут измерять не иначе как в тоннах, в электронике тоже существуют такие физические величины, для измерения которых пользуются большими числами, и такие, которые измеряются малыми. Это значит, что чаще всего вам придется иметь дело с одним и тем же набором приставок для каждой физической величины. Ниже приведены такие комбинации величин и единиц их измерения.
> Ток: пА, нА, мкА, мА, А.

> Индуктивность: нГн, мГн, мкГн, Гн.

> Емкость: пФ, нФ, мкФ, мФ, Ф.

> Напряжение: мкВ, мВ, В, кВ.

> Сопротивление: Ом, кОм, МОм.

> Частота: Гц, кГц, МГц, ГГц.
Использование некоторых новых терминов

Хотя ранее в этой главе мы уже рассматривали такие понятия, как сопротивление, напряжение и ток, есть еще некоторые термины, которые могут оказаться для вас внове.

Емкость представляет собой способность накапливать заряд под воздействием электрического поля. Такой накопленный заряд может повышать или понижать напряжение более плавно, чем в отсутствие емкости. Для применения данного свойства на практике используется такой компонент, как конденсатор. На рисунке ниже показаны формы двух сигналов: первый сигнал представляет собой снижение напряжения от +5 В до 0 В в отсутствие конденсатора, второй — в схеме с конденсатором.



Частотой переменного тока называется мера повторяемости сигнала. Например, напряжение в настенной розетке совершает один полный цикл изменения 50 раз в секунду. На следующем рисунке показан синусоидальный сигнал, который совершает постоянные переходы от -5 В к +5 В и возвращается обратно к уровню -5 В, завершая тем самым цикл. Говорят, что сигнал имеет частоту 50 Гц, если он со-вершает 50 циклов в секунду.

Индуктивность - это способность запасать энергию в магнитном поле; эта накопленная энергия препятствует изменению тока точно так же, как энергия, накопленная конденсатором, препятствует резким изменениям напряжения. Для использования данного свойства на практике в электронике применяются катушки индуктивности, или дроссели.

Мощность служит мерой количества работы, которую электрический ток совершает при протекании через элементы схемы. К примеру, если приложить к электрической лампе напряжение, подведя ток при помощи проводов, то на нагрев этих проводов будет затрлчивться какая-то работа. В данном случае мощность можно вычислить, перемножив приложенное к лампе напряжение на ток, протекающий по проводам.


Используя информацию, приведенную в табл. 1.1 и 1.2, вы уже можете перевести экспоненциальную запись числа или аббревиатуру физической величины на человеческий язык. Ниже дано несколько примеров:
> мА: миллиампер, или 1 тысячная ампера;

> мкВ: микровольт, или 1 миллионная вольта;

> нФ: нанофарада, или 1 миллиардная фарады;

> кВ: киловольт, или 1 тысяча вольт;

> МОм: мегаом, или 1 миллион ом;

> ГГц: гигагерц, или 1 миллиард герц.
В аббревиатурах префиксов, которые представляют числа, превышающие 1, такие как М (для приставки Мега), используют прописные буквы. Аббревиатуры приставок, которые меньше 1, пишутся со строчной буквы — как, например, в слове милли. Единственным исключением из этого правила является приставка к для обозначения префикса кило-, которая также записывается с маленькой буквы.
Иногда все же для обозначения тысяч используют и прописную литеру К — а именно при записи килоом; если вы увидите запись вида 3,3 К, то это будет значить 3,3 килоома.
Вы должны научиться преобразовывать любое число к экспоненциальному виду, чтобы затем нормально проводить расчеты. Убедиться в этом вы сможете уже в следующем разделе.
Понятие о законе Ома

Итак, давайте предположим, что вы собрали свою первую схему. Вы знаете величину тока, которую компонент схемы может выдержать, не выходя из строя, и напряжение, выдаваемое источником питания. Следовательно, вам нужно рассчитать сопротивление, которое не позволит току в цепи превысить пороговое значение.

В начале 1800-х годов Георг Ом опубликовал уравнение, названное впоследствии законом Ома, которое позволяет выполнить такой расчет. Закон Ома гласит: напряжение равняется произведению тока на сопротивление, или (в стандартной математической записи):
U = I x R
Выводы из закона Ома

Помните ли вы из школы основы алгебры? Давайте еще раз вспомним вместе: если в уравнении с тремя величинами известны две, то достаточно легко рассчитать третью неизвестную величину. Закон Ома основывается именно на таком уравнении; члены уравнения можно переставлять как угодно, но зная любые два, всегда можно вычислить третий. Например, можно сказать, что ток является частным от деления напряжения на сопротивление:

I = U / R
Наконец, можно рассчитать сопротивление при известных токе и напряжении, переставив члены того же уравнения:

R = U / I
Итак, пока вроде бы все ясно. Теперь давайте попробуем проверить наши знания на практике: пусть есть схема, питающаяся от 12-вольтовой батареи, и электрическая лампа (скажем, большой фонарик). Перед установкой лампочки в фонарик вы измерили сопротивление схемы мультиметром и нашли, что оно равно 9 Ом. Вот формула для расчета электрического тока по закону Ома:
I = U / R = 12 вольт / 9 Ом = 1,3 A
Ну, а что, если вы обнаружили, что лампочка светит чересчур уж ярко? Яркость можно изменить, уменьшив ток, т.е. просто добавив в схему резистор. Изначально мы имели сопротивление схемы 9 Ом; добавив 5-омный резистор в схему, мы повысим ее сопротивление до 14 Ом. В этом случае ток будет равен:
I = U / R = 12 вольт / 14 Ом = 0,9 А
Расчеты с применением больших и малых величин

Предположим, что у вас есть схема с небольшой сиреной, которая имеет сопротивление 2 килоома, а также 12-вольтовая батарея. Для того чтобы рассчитать ток, вам нужно выразить сопротивление цепи не в килоомах, а в базовых единицах — омах, не используя приставку "кило". В нашем случае это значит, что нужно разделить напряжение на 2000 Ом:
I = U / R = 12 вольт / 2000 Ом = 0,006 A
В результате мы получили ток, записанный как доля 1 А. После окончания расчета будет удобнее вновь использовать префикс, чтобы дать ответ в более лаконичном виде: 0,006 А = 6 мА
Подводя итоги, можно сказать: для проведения расчетов необходимо все исходные величины преобразовать к базовым единицам счисления.
Мощность и закон Ома

Георг Ом (вот уж поистине, наш пострел везде поспел!) также нашел выражение для мощности, вычисляемое при известных напряжении и токе:
Р = U х I; или Мощность = напряжение X ток.
Это уравнение можно использовать для расчета мощности, потребляемой сиреной из предыдущего примера:
Р = 12 В х 0,006 А = 0,072 Вт, или 72 мВт.
Ладно, а что же делать, если напряжение на сирене нам не известно? Вы можете заняться простейшим преобразованием формулы для мощности, используя школьные знания (а вы-то думали, что зря протираете штаны на уроках физики!). Поскольку U = I х R, можно подставить это выражение в формулу для мощности, получив
Р = I2 х R; или Мощность = квадрат тока х сопротивление.
Вы также можете использовать алгебраические преобразования, чтобы самостоятельно прикинуть, как можно рассчитать сопротивление, напряжение или ток, зная мощность и любой другой из этих же параметров.
Что, вы действительно так боитесь алгебры? Мария Ивановна завалила вас на экзамене двадцать лет назад? Ну что ж, тогда вы, видимо, с облегчением узнаете, что в Интернете существует множество уже готовых калькуляторов для вычисления по закону Ома. Погфобуйте выйти на тот же www.google.com и ввести в качестве ключевых слов "Калькулятор закона Ома". Ну, и не забудьте заглянуть в главу 17, где приведены 10 основных формул электроники.


1   2   3   4   5   6   7   8   9   ...   27

Похожие:

Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon Руководство по эксплуатации Содержание
Содержите рабочее место в чистом состоянии. Рабочее место, находящееся в беспорядке, создает опасность получения травм
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon Инструкция по безопасности на рабочем месте заказчика Автоматизированное рабочее место
Автоматизированное рабочее место заказчика (далее – арм) использует скзи для обеспечения целостности, авторства и конфиденциальности...
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon Техническое задание (идентификационный номер процедуры №35/ 4-7978...
Тип оборудования: Рабочее место визуального контроля vs8/S/6 Lynx (Великобритания)
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon Д. С. Блинов (глава 6), Д. Ю. Гончаров (глава 8), М. А. Горбатова...
Истоки и современное содержание уголовной политики в области здравоохранения: актуальные вопросы теории и практики
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon Общая психодиагностика
В. С. Аванесов глава 2 ( 2,1). В. С. Бабина глава 6 ( 4). Е. М. Борисова глава В. Б. Быстрицкас глава 7 ( 1). А. В. Визгина глава...
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon 1 Рабочее место слесаря На рабочем месте слесарь выполняет операции,...
На рабочем месте слесарь выполняет операции, связанные с его профессией. Рабочее место оснащается оборудованием, необходимым для...
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon Учебное пособие общая психодиагностика
В. С. Аванесов глава 2 ( 2,1). В. С. Бабина глава 6 ( 4). Е. М. Борисова глава В. Б. Быстрицкас глава 7 ( 1). А. В. Визгина глава...
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon Руководство пользователя «Мобильное место»
...
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon Техническое задание на выполнение комплекса работ по разработке проектно-сметной...
«Монтаж системы автоматической передачи данных с объектов отс на рабочее место диспетчера одс»
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon «Автоматизированное рабочее место заведующего предприятием «Аптека Виноградная»
Тема: «Автоматизированное рабочее место заведующего предприятием «Аптека Виноградная»
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon Инструкция № по технике безопасности при работе с режущими инструментами
К работе с режущими инструментами допускаются лица, прошедшие вводный инструктаж и инструктаж на рабочем месте по правилам их безопасной...
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon Паспорт
Индивидуальное рабочее место обеспечивается учебным оборудованием в соответствии с программой по предмету
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon Техническое задание Техническое задание на поставку и ввод в эксплуатацию...
Техническое задание на поставку и ввод в эксплуатацию медицинского оборудования – Рабочее место офтальмолога (авторефрактометр, пневмотонометр,...
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon Для регистрации в гас «Управление»
Настроить рабочее место пользователя в соответствии с техническими требованиями
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon Винчи Дэн Браун Об авторе Факты Пролог Глава 1 Глава 2 Глава 3 Глава 4
Дэна Брауна, переведенных на 40 языков, приближается к 8 миллионам экземпляров. Писатель также занимается журналистикой, регулярно...
Ii. Ряд 5, стеллаж с инструментами: запасаясь впрок Глава Рабочее место радиолюбителя icon Руководство пользователя. Автоматизированное рабочее место администратора
Исполнительный директор службы Финансово-экономической информации зао «Интерфакс»

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск