4.3. Состав проектной документации на строительство изотермического хранилища
4.3.1. В состав проектной документации изотермического хранилища комплекса СПГ следует включать:
резервуар (или резервуары) со всеми необходимыми системами, средствами и устройствами, обеспечивающими его работоспособность;
фундамент под резервуар;
подогреватель основания (для надземных и подземных резервуаров, при необходимости);
системы, устройства и средства защиты от напорного воздействия грунтовых вод (для подземных резервуаров, при необходимости);
защитное ограждение;
эстакаду для подвода технологических коммуникаций;
систему, устройства и средства тепловой и противопожарной защиты;
рабочую площадку установки резервуара (резервуаров) и необходимых (функциональных систем в пределах защитного ограждения;
подъездные коммуникации.
4.3.2. Ввиду отсутствия типовых проектов изотермических резервуаров СПГ, до их разработки и ввода в действие, в каждом конкретном проекте комплекса СПГ должен разрабатываться индивидуальный проект собственно изотермического резервуара определенного типа, принятого для данного комплекса СПГ.
Индивидуальные проекты изотермических резервуаров СПГ должны разрабатываться специализированными организациями на основании технических заданий, выдаваемых организацией - генпроектировщиком комплекса СПГ в целом.
В состав проекта собственно резервуара должны входить следующие основные элементы:
конструкции внутренней и наружной цилиндрических емкостей с перекрытиями;
конструкции шахт для размещения внутри резервуара технологических трубопроводов и измерительных систем со всем необходимым оборудованием, а также погружных насосов для откачки СПГ;
конструкция грузоподъемных и других необходимых технических средств, а также специально оборудованных площадок для изъятия из хранилища, без его опорожнения, погружных насосов, сигнализаторов уровня и других устройств;
конструкция люков для засыпки (подсыпки) в межстенное пространство и пространство между перекрытиями перлита, а также люков-лазов для возможности осмотра обслуживающим персоналом межстенного пространства и внутренней емкости;
конструкции узлов вводов и выводов из резервуара всех трубопроводов, кабелей и других устройств;
конструкция лестницы с переходами, обеспечивающей доступ обслуживающего персонала на перекрытие резервуара;
конструкция лестниц, а также других устройств и систем, обеспечивающих доступ обслуживающего персонала и доставку необходимого оборудования во внутреннюю емкость через люки, возможность ее полного осмотра и осуществление ремонтных работ, связанных, в первую очередь, с нарушением ее герметичности;
система подачи инертного газа (азота), а также природного газа во внутреннюю емкость;
система распыливания СПГ на днище и боковые стенки внутренней емкости;
конструкция теплоизоляции днища резервуара, а также боковых стенок и перекрытия;
система создания и автоматического поддержания избыточного давления ("вентиляции") инертного газа в межстенном пространстве с соответствующим оборудованием;
система оперативного обнаружения и идентификации утечек СПГ из внутренней емкости в межстенное пространство с соответствующим оборудованием,
система КИП и А;
системы предотвращения повышения давления и образования вакуума с соответствующим оборудованием как во внутренней емкости, так и в межстенном пространстве;
система предотвращения температурного расслоения СПГ в резервуаре (при необходимости).
4.4. Требования к материалам и элементам конструкций резервуаров
4.4.1. В составе настоящего раздела 4.4., принимая во внимание новизну проектирования изотермических резервуаров СПГ, специфику хранения криогенного продукта и особые требования к надежности и безопасности хранилищ СПГ, приводятся подробные требования к материалам и элементам конструкций резервуаров, которые необходимо учитывать организациям-разработчикам соответствующего криогенного оборудования.
Требования настоящего раздела норм должны включаться в состав технических заданий на разработку изотермических резервуаров различных типов и технологического оборудования, обеспечивающего нормальную безаварийную эксплуатацию резервуаров.
4.4.2. При проектировании изотермических резервуаров для СПГ и защитных ограждений следует предусматривать применение бетонов, обладающих повышенной морозостойкостью и водонепроницаемостью.
Класс бетона по прочности должен определяться при расчете конкретной конструкции, однако, должен быть не ниже В-25.
Бетон для элементов конструкции, соприкасающихся при нормальной эксплуатации с СПГ (внутренняя емкость), должен соответствовать по морозостойкости марке не ниже Р - 300, а по водонепроницаемости - марке не ниже W - 8.
Бетон для элементов конструкции, не соприкасающихся при нормальной эксплуатации с СПГ (наружная емкость, кольцевая защитная стенка), должен отвечать по морозостойкости марке не ниже Р - 200, а по водонепроницаемости - марке не ниже W - 6.
Материал для приготовления бетона должен отвечать требованиям ГОСТ 26633-85 "Бетон гидротехнический. Технические требования" и требованиям настоящих норм.
Для резервуаров СПГ следует предусматривать применение бетонов на сульфатостойком портландцементе. Допускается применение портландцемента с содержанием С3А 5 % и С3А + С4Г 22 %.
Водоцементное отношение для бетона не должно превышать 0,45.
4.4.3. Мелкий заполнитель (песок) должен отвечать требованиям ГОСТ 10268-80.
Рекомендуется в качестве мелкого заполнителя использовать естественные пески с модулем крупности не ниже 2,0 и содержанием отмучиваемых примесей не более 1 % по весу.
Крупный заполнитель (щебень) должен отвечать требованиям ГОСТ 10268-80 "Бетон тяжелый. Технические требования к заполнителям".
Рекомендуется применять заполнители высокой прочности и низкой пористости, обладающие повышенной морозостойкостью. Модуль упругости и коэффициент температурного расширения заполнителя не должны при этом существенно отличаться от аналогичных показателей для цементного камня. Указанным требованиям обычно удовлетворяют кремниевые, базальтовые или гранитные заполнители.
4.4.4. Для повышения морозостойкости и водонепроницаемости бетона рекомендуется применять добавку типа СДБ в количестве 0,1 0,15 от веса цемента. При этом следует руководствоваться "Рекомендациями НИИЖБ по применению повышенных дозировок добавки СДБ в тяжелых бетонах" 1980 г.
4.4.5. Для преднапряженных железобетонных элементов хранилищ СПГ рекомендуется применять арматурную холоднотянутую проволоку и арматурные канаты спиральные семипроволочные.
Для железобетонных элементов рекомендуется гладкая арматура класса А-II марки 10ГТ.
При соответствующем обосновании в качестве арматуры допускается применение и других марок сталей.
4.4.6. При проведении расчетов значения предела текучести и модуля упругости арматуры следует принимать при нормальной температуре. Дополнительно рекомендуется величину расчетного предела текучести арматуры умножать на коэффициент условий работы, равный для:
арматурной холоднотянутой проволоки - 0,9;
стержневой арматуры - 0,7;
канатов - 0,8.
4.4.7. Для защиты арматуры от коррозии и обеспечения заданной огнестойкости конструкции, на навитую кольцевую арматуру необходимо нанести, не менее, чем в три слоя, защитное покрытие из торкрет-бетона с общей толщиной, не менее 30 мм.
Каналы для натяжения прядевой арматуры должны проверяться на отсутствие скоплений капельной влаги и тщательно заделываться раствором.
4.4.8. Неконструкционные (газогерметизирующие) металлические перегородки, выполненные как единый элемент с предварительно напряженным железобетоном, находящиеся при нормальной эксплуатации в прямом контакте с СПГ, могут быть изготовлены из обычной (нехладостойкой) стали только при условии, что составная конструкция подверглась такому предварительному напряжению, при котором, ни при каких расчетных нагрузках не возникает недопустимых растягивающих напряжений.
Неконструкционные металлические перегородки, выполненные как единый элемент с предварительно напряженным железобетоном, не находящееся при нормальных условиях в прямом контакте с СПГ, и служащие, главным образом, как средство внешней гидрозащиты (внешние железобетонные стенки) могут быть изготовлены из обычной стали при условии, что составная конструкция подверглась такому предварительному напряжению, при котором, ни при каких расчетных нагрузках не возникает недопустимых растягивающих напряжений.
4.4.9. Для сооружения внутренних емкостей изотермических хранилищ СПГ должны применяться стали, строго соответствующие условиям работы резервуара.
Технические условия на сталь для внутреннего резервуара должны разрабатываться совместно с организацией-разработчиком конструкции резервуара и согласовываться с изготовителем резервуара.
При выборе механических характеристик хладостойкой стали, особое внимание должно быть уделено показателям ударной вязкости металла при рабочей температуре, включая показатели после механического старения, стойкости стали к распространению трещин, а также ее свариваемости.
Для сооружения внутренних емкостей резервуаров СПГ должны использоваться такие стали, в которых небольшой дефект, не поддающийся обнаружению современными методами неразрушающего контроля, включая дефекты сварных швов, не может стать причиной возникновения развивающейся трещины.
4.4.10. Все материалы, применяемые для сооружения внутренней емкости, должны быть физически, химически и термически совместимы с СПГ.
4.4.11. Внутренняя и наружная емкости двухстенных металлических резервуаров СПГ должны быть только сварной конструкции. Для сооружения наружной емкости может быть использована углеродистая сталь. За расчетную рабочую температуру наружной емкости следует принимать среднюю температуру самой холодной пятилетки в данном районе.
4.4.12. Конструкция, применяемые материалы и качество изготовления резервуара должны исключать возникновение мест с опасной концентрацией напряжений как в исходном состоянии, так и после вывода конструкции на расчетный, по температуре и давлению, режим работы.
4.4.13. Для двухстенных наземных металлических резервуаров внешний корпус должен быть окрашен в светлые тона для снижения теплового воздействия солнечной радиации.
В случае, если купол внешней емкости резервуара изготовлен из углеродистой стали, в конструкции должны быть предусмотрены специальные меры, исключающие попадание СПГ и криогенное воздействие его на поверхность купола. В качестве потенциальных источников утечек СПГ при этом следует рассматривать, прежде всего, фланцевые соединения управляющей арматуры при ее размещении на специальной площадке у края купола.
4.4.14. Проектом должны быть предусмотрены средства и устройства защиты внешней металлической емкости от коррозии.
4.4.15. Внутренние самонесущие емкости изотермических резервуаров должны быть, как правило, рассчитаны на рабочее избыточное давление паровой фазы 500 700 мм вод. ст., максимальное расчетное давление 900 1100 мм вод. ст. и вакуум 50 мм вод. ст. Величины расчетных избыточного давления и вакуума могут быть увеличены или уменьшены, однако, в каждом конкретном случае увеличение избыточного давления и вакуума должно быть обосновано технико-экономическим расчетом, в зависимости от конструктивных особенностей и назначения хранилища, а также режимов его эксплуатации.
Конструктивно внутренние емкости изотермических резервуаров могут выполняться как с самонесущим купольным, так и с плоским перекрытием, подвешенным к несущему нагрузку куполу внешней емкости.
Вне зависимости от конструкций внутренней емкости и наружно оболочки, они должны быть выполнены в виде герметичных сосудов и исключать, в нормальном состоянии, переток газа в пространство между емкостями и в окружающую среду.
4.4.16. Изотермические резервуары СПГ должны быть снабжены тепловой изоляцией, обеспечивающей заданный по техническим условиям коэффициент испаряемости СПГ и ограничивающей (исключающей) тепловое воздействие резервуара на окружающую среду.
4.4.17. В качестве заполнителя межстенного пространства резервуаров с самонесущей внутренней емкостью и купольными перекрытиями следует прогонять песок перлитовый мелкий, вспученный марок 75 или 100 со знаком качества по ГОСТ 10832-74*, с влажностью не более 0,7 %, коэффициентом уплотнения не более 1,5 и коэффициентом теплопроводности при температуре плюс 20 С не более 0,05 вт/м. град.
4.4.18. Для плоской подвесной конструкции перекрытия внутренней емкости, закрепленного на специальных подвесках к несущему куполу внешней емкости, могут применяться теплоизоляционные материалы в виде плит или матрацев из волокнистых материалов типа стекловолокна или пеностекла, а также засыпные материалы типа перлита.
4.4.19. Конструкция засыпной тепловой изоляции боковой поверхности резервуара должна обеспечивать возможность неоднократного обратного расширения внутренней емкости при ее отогреве до нормальных температур без возникновения в ней недопустимых термических напряжений.
Для этой цели может быть использована установка, между боковыми поверхностями внутренней и наружной емкостей, мембраны ("третьей стенки") или других устройств, исключающих передачу нагрузок от засыпного материала на боковую поверхность внутренней емкости, а также устройство специального компенсационного слоя из упругих элементов.
Толщина компенсационного слоя должна выбираться проектом по расчету таким образом, чтобы боковое давление засыпки на стенки резервуара, при их максимальных расчетных температурных деформациях, не превышало предела прочности перлитного песка на сжатие, и было ниже допустимого бокового давления на стенки внутренней емкости, с учетом давления инертного газа.
Исходя из особенностей конструкции внутренней емкости и удобства монтажа, компенсационные слои могут устанавливаться либо только на наружной боковой поверхности внутренней емкости, либо, одновременно, и на внутренней боковой поверхности наружной емкости.
В качестве материала для компенсационного слоя рекомендуется применять волокнистые теплоизоляционные материалы с коэффициентом теплопроводности при плюс 20 С не выше 0,05 вт/м. град., влажностью не более 2,0 % и "коэффициентом возвратимости" не менее 0,6 при нагрузках, равных допустимому боковому давлению на стенки внутренней емкости.
4.4.20. Материалы, применяемые для теплоизоляции днищ самонесущих внутренних емкостей изотермических резервуаров, и их конструктивное исполнение должны исключать деформацию элементов внутренней емкости и обеспечивать передачу и распределение нагрузки на днище внешней емкости.
Изоляция днища внутренней емкости в зоне окраек должна быть сплошной из прочных твердых материалов, которые должны воспринимать и передавать основную нагрузку стенок в зону окраек наружной емкости. С целью разгрузки узла сопряжения днища и стенки от напряжений, возникающих при заливе жидкости, меду опорным теплоизоляционным материалом и окрайками внутренней емкости рекомендуется использовать прокладку из твердых пород древесины или других заменяющих ее материалов.
Для теплоизоляции днища внутренних изотермических емкостей СПГ следует использовать несгораемые материалы с закрытопористой структурой с коэффициентом теплопроводности при плюс 20 С не более 0,06 вт/м. С, такие как пеностекло, пенобетон или их композиции.
Прочностные характеристики и конструкция теплоизоляции днища должны выбираться в проекте по расчету от совокупности нагрузок, создаваемых внутренней емкостью при номинальной степени ее заполнения СПГ, с учетом внешних сейсмических воздействий и приниматься с коэффициентом запаса, определенным техническими условиями на резервуар.
4.4.21. Теплоизоляция укладывается в виде отдельных блоков в несколько слоев.
Неровности поверхности, основания под изоляцию, а также нижней и верхней поверхностей каждого слоя изоляции должны быть ограничены допусками, определенными при проектировании.
Между отдельными блоками в каждом теплоизоляционном слое должны быть уложены прокладки из упругих элементов, устойчивых к термическому воздействию СПГ и обеспечивающих разгрузку теплоизоляции от остаточных механических и термических напряжений.
Рекомендуется применение асбестового картона, вермукулита, порошков-заполнителей на базе гипса. При соответствующем обосновании допускается применение иных негорючих материалов.
Деформационные зазоры меду отдельными блоками и слоями теплоизоляции зависят от расчетных нагрузок и типа применяемого прокладочного материала и должны быть определены проектом, с проведением соответствующих поверочных расчетов на деформацию изоляции как несущего нагрузку элемента.
Не допускается применение материалов с текучими свойствами (асфальт, битум), а также материалов, подверженных растрескиванию при температуре СПГ, для достижения плотной укладки изоляции на основание, особенно, в зоне окраек днища наружной емкости и в зоне действия окраек днища внутренней емкости на изоляцию, а также для выравнивания поверхностей отдельных слоев теплоизоляции.
Допускается применение мастик на битумной основе (типа "ЭГИК-3") для гидроизоляции отдельных блоков в заводских условиях (методом "вмазывания в поры").
Для выравнивания под укладку изоляции, а также поверхности теплоизоляции под днище внутренней емкости рекомендуется применять сухой мелкий однопородный песок.
Диаметр песчаной подушки под днище должен быть ограничен диаметром внутренней емкости при использовании теплоизолятора из пенобетона и быть меньше этого диаметра для случая использования теплоизолятора из пеностекла с опорными элементами из пенобетона.
4.4.22. Для теплоизоляции стенок и днищ резервуаров комбинированного типа, с внутренней тонколистовой гофрированной оболочкой и внешней железобетонной емкостью, могут быть использованы жесткие вспененные негорючие плиточные материалы с закрытыми порами, способные выдержать нагрузку, создаваемую весом оболочки и СПГ, и имеющие коэффициент теплопроводности при плюс 20 С не более 0,05 вт/м. град.
Крепление плит теплоизоляционного материала должно проводиться с помощью специальных соединений на внутреннюю поверхность внешней емкости.
4.4.23. Крепежные и другие элементы конструкции засыпной теплоизоляции не должны препятствовать перемещению теплоизоляции при засыпке и естественной усадке и не должны способствовать образованию пустот.
4.4.24. Для металлических деталей, входящих в состав теплоизоляционной конструкции и соединяемых с внутренней емкостью с помощью сварки, а также металлических крепежных деталей, несущих нагрузку, следует использовать те же марки стали, что и для внутренней емкости.
Металлические детали теплоизоляционных конструкций не должны проходить через всю толщину теплоизоляционного слоя.
Проникновение влаги из окружающей среды (грунт, воздух) в пространство между внутренней и наружной емкостями хранилища должно исключаться конструкцией, используемыми материалами и средствами гидрозащиты наружной поверхности внешней емкости.
4.4.25. Все трубопроводы и другие устройства, проходящие в пространстве между внутренней и внешней емкостью, должны быть рассчитаны с допуском на термические напряжения при температуре СПГ. Применять сильфонные компенсаторы в пространстве, занятом теплоизоляцией, не допускается.
Конструкция вводов и выводов "холодных" трубопроводов через перекрытие наружной емкости хранилища должна исключать понижение температуры внешнего перекрытия ниже допустимой по техническим условиям.
4.4.26. Наружная тепловая изоляция и другие специальные покрытия резервуаров, применяемые для защиты от криогенного воздействия разлитого СПГ или для защиты от теплового воздействия пожаров, должны быть негорючими и стойкими к воздействию воды, применяемой для орошения.
4.4.27. Фундаменты и донная опорная плита надземных резервуаров СПГ должны быть изготовлены из несгораемых материалов с пределом огнестойкости, рассчитанным на время полного выгорания расчетного объема СПГ, но не менее 3 часов, и рассчитаны на криогенное и гидростатическое воздействие СПГ.
При этом, должны быть приняты меры против морозного пучения грунта и его термомеханического воздействия на конструкцию.
4.4.28. В качестве мер по предотвращению вспучивания грунтов следует принимать:
замену коренных грунтов в основании надземного резервуара на грунты, не подверженные криогенному воздействию (при условии, что нулевая изотерма за нормативный период эксплуатации резервуара не выйдет за пределы обновленного слоя грунта или не проникнет в слои грунта, подверженные криогенному воздействию);
установку под днищем заглубленного в грунт резервуара специального подогревателя с одновременной заменой (при необходимости) пучинистых грунтов со стороны боковой поверхности на грунты, не подверженные криогенному воздействию;
установку резервуара на поверхности грунта с организацией подогрева его основания и обвалованием (при необходимости) его боковой поверхности непучинистым, песчаным или мягким грунтом, не имеющем в своем составе органических примесей;
установку резервуара на свайном или другом основании, при котором обеспечивается естественно-вентилируемое воздушное пространство между донной плитой основания и поверхностью грунта.
4.4.29. Конструкция и режимные параметры подогревателя основания подземного резервуара должны быть определены проектом по расчету, исходя из требований:
предотвращения оттока холода под основание от грунта, промерзающего со стороны его боковой поверхности ("эффект загибания изолиний под основание");
минимизации теплового воздействия подогревателя на испаряемость СПГ из хранилища;
автоматического регулирования тепловой нагрузки подогревателя по заданной техническими условиями температуре.
Для выполнения указанных требований для подземных резервуаров рекомендуется:
принимать внешний диаметр подогревателя не менее диаметра внутренней емкости жилища, но не более диаметра внешней железобетонной емкости;
выполнять конструкции подогревателя в виде дифференциальной составной системы, включающей расположенные в одной плоскости центральный круг и периферийное кольцо с внешним диаметром, равным внешнему диаметру резервуара, с независимым подводом к ним; регулированием тепловой нагрузки.
Конструкция подогревателя под основанием резервуара, установленного непосредственно на поверхности грунта; без обвалования грунтом боковой поверхности, должна обеспечивать изъятие и замену нагревательных элементов без нарушения целостности фундамента.
4.4.30. Резервуары СПГ должны оборудоваться специальными лестницами для доступа обслуживающего персонала на перекрытие.
По всему периметру перекрытия следует устанавливать ограждающие конструкции.
4.4.31. Общее количество и расположение на перекрытии люков для засыпки перлита, а также доступ к ним погрузочных средств и механизмов должны быть выбраны с учетом усадки перлита и необходимости дополнительной его подсыпки в процессе эксплуатации резервуара.
4.4.32. Изотермические резервуары СПГ должны иметь не менее двух люков-лазов для доступа персонала во внутреннюю емкость и не менее двух люков-лазов для доступа персонала в межстеновое пространство.
Съемные крышки люков-лазов должны быть выполнены по принципу "разрывных мембран" и обеспечивать их разрушение при внутренних нагрузках по давлению меньших, чем нагрузки, приводящие к разрушению перекрытий внутренней и наружной емкостей резервуара.
4.4.33. Все узлы ввода и выводы из резервуара трубопроводов и других элементов и устройств должны быть выполнены только через перекрытие и оборудованы соответствующими компенсационными элементами.
Технологические штуцеры и штуцеры для систем КИП и А должны, как правило, в целях удобства обслуживания размещаться в едином секторе на наружном перекрытии.
Для обслуживания технологического оборудования, предохранительной арматуры и средств КИП и А на перекрытии следует устраивать специальные площадки, оснащенные средствами малой механизации для монтажа-демонтажа различного резервуарного оборудования, включая погружные насосы, предохранительные клапаны, уровнемеры, сигнализаторы верхнего предельного положения уровня.
4.4.34. Для установки в резервуаре погружных насосов выдачи СПГ следует предусматривать шахты, конструкция которых должна обеспечивать возможность изъятия и замены любого из насосных агрегатов без опорожнения резервуара от жидкости. Площадка прохода шахт через наружное перекрытие хранилища должна быть оснащена соответствующими грузоподъемными средствами.
4.4.35. Грузоподъемные механизмы, средства малой механизации для монтажа-демонтажа резервуарного оборудования должны быть искробезопасного исполнения, с электроприводами во взрывозащищенном исполнении.
4.4.36. Грузоподъемные средства и механизмы для надземных двухстенных металлических резервуаров должны иметь самостоятельные опорные колонны или другие опорные конструкции, расположенные непосредственно у резервуара на собственном фундаменте, не связанном с фундаментом резервуара.
Для надземных резервуаров с внешним железобетонным корпусом, по согласованию с организацией-разработчиком конструкции резервуара, допускается опирание грузоподъемных средств и механизмов непосредственно на железобетонный корпус резервуара.
|