Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации


Скачать 3.83 Mb.
Название Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации
страница 14/23
Тип Документы
rykovodstvo.ru > Руководство эксплуатация > Документы
1   ...   10   11   12   13   14   15   16   17   ...   23
Извлечение из ГОСТ 13109-97.«Нормы качества электрической энергии в системах электроснабжения общего назначения»
4.ПОКАЗАТЕЛИ КЭ

4.1 Показателями КЭ являются:

- установившееся отклонение напряжения dUy;

- размах изменения напряжения dUt;

- доза фликера Pt;

- коэффициент искажения синусоидальности кривой напряжения KU;

- коэффициент n-ой гармонической составляющей напряжения KU(n);

- коэффициент несимметрии напряжений по обратной последовательности K2U;

- коэффициент несимметрии напряжений по нулевой последовательности K0U;

- отклонение частоты Df;

- длительность провала напряжения Dtп;

- импульсное напряжение Uимп;

- коэффициент временного перенапряжения Kпер U.

Свойства электрической энергии, графические пояснения этих свойств, показатели КЭ, а также наиболее вероятные виновники ухудшения КЭ приведены в приложении А.
4.2.При определении значений некоторых показателей КЭ используют следующие вспомогательные параметры электрической энергии:

- частоту повторения изменений напряжения FdUt;

- интервал между изменениями напряжения Dti, i+1;

- глубину провала напряжения dUп;

- частость появления провалов напряжения Fп;

- длительность импульса по уровню 0,5 его амплитуды Dtимп0,5;

- длительность временного перенапряжения Dtпер U .
4.3.Способы расчета и методики определения показателей КЭ и вспомогательных параметров приведены в приложении Б.
5.НОРМЫ КЭ
5.1.Установлены два вида норм КЭ: нормально допустимые и предельно допустимые.

Оценка соответствия показателей КЭ указанным нормам проводится в течение расчетного периода, равного 24 ч, в соответствии с требованиями раздела 6.

5.2. Отклонение напряжения

Отклонение напряжения характеризуется показателем установившегося отклонения напряжения, для которого установлены следующие нормы:

- нормально допустимые и предельно допустимые значения установившегося отклонения напряжения dUy на выводах приемников электрической энергии равны соответственно ±5 и ±10 % от номинального напряжения электрической сети по ГОСТ 721 и ГОСТ 21128 (номинальное напряжение);

- нормально допустимые и предельно допустимые значения установившегося отклонения напряжения в точках общего присоединения потребителей электрической энергии к электрическим сетям напряжением 0,38 кВ и более должны быть установлены в договорах на пользование электрической энергией между энергоснабжающей организацией и потребителем с учетом необходимости выполнения норм настоящего стандарта на выводах приемников электрической энергии. Определение указанных нормально допустимых и предельно допустимых значений проводят в соответствии с нормативными документами, утвержденными в установленном порядке.

5.3. Колебания напряжения

Колебания напряжения характеризуются следующими показателями:

- размахом изменения напряжения;

- дозой фликера.

Нормы приведенных показателей установлены в 5.3.1 - 5.3.5.

5.3.1.Предельно допустимые значения размаха изменения напряжения dUt в точках общего присоединения к электрическим сетям при колебаниях напряжения, огибающая которых имеет форму меандра (см.рисунок Б.1), в зависимости от частоты повторения изменений напряжения Fd Ut или интервала между изменениями напряжения Dti, i+1 равны значениям, определяемым по кривой 1 рисунка 1, а для потребителей электрической энергии, располагающих лампами накаливания, в помещениях, где требуется значительное зрительное напряжение, - равны значениям, определяемым по кривой 2 рисунка 1.Перечень помещений с разрядами работ, требующих значительного зрительного напряжения, устанавливают в нормативных документах, утверждаемых в установленном порядке.

Методы оценки соответствия размахов изменений напряжения нормам, установленным в 5.3.1, при колебаниях напряжения с формой, отличающейся от меандра, приведены в приложении В.

5.3.2.Предельно допустимое значение суммы установившегося отклонения напряжения dUy и размаха изменений напряжения dUt в точках присоединения к электрическим сетям напряжением 0,38 кВ равно ±10 % от номинального напряжения.

5.3.3.Предельно допустимое значение для кратковременной дозы фликера РSt при колебаниях напряжения с формой, отличающейся от меандра, равно 1,38, а для длительной дозы фликера РLt при тех же колебаниях напряжения равно 1,0.

Кратковременную дозу фликера определяют на интервале времени наблюдения, равном 10 мин.Длительную дозу фликера определяют на интервале времени наблюдения, равном 2 ч.

5.3.4.Предельно допустимое значение для кратковременной дозы фликера РSt в точках общего присоединения потребителей электрической энергии, располагающих лампами накаливания в помещениях, где требуется значительное зрительное напряжение, при колебаниях напряжения с формой, отличающейся от меандра, равно 1,0, а для длительной дозы фликера РLt в этих же точках равно 0,74.

5.3.5.Метод расчета кратковременных и длительных доз фликера для колебаний напряжения с формой, отличающейся от меандра, приведен в приложении В.

5.4. Несинусоидальность напряжения

Несинусоидальность напряжения характеризуется следующими показателями:

- коэффициентом искажения синусоидальности кривой напряжения;

- коэффициентом i-ой гармонической составляющей напряжения.

Нормы приведенных показателей установлены в 5.4.1, 5.4.2.

Предельно допустимое значение коэффициента n-ой гармонической составляющей напряжения вычисляют по формуле:

KU(n)пред = 1,5 KU(n)норм,

где KU(n)норм - нормально допустимое значение коэффициента n-ой гармонической составляющей напряжения.

5.5. Несимметрия напряжений

Несимметрия напряжении характеризуется следующими показателями:

- коэффициентом несимметрии напряжений по обратной последовательности;

- коэффициентом несимметрии напряжений по нулевой последовательности.

Нормы приведенных показателей установлены в 5.5.1, 5.5.2.

5.5.1.Нормально допустимое и предельно допустимое значения коэффициента несимметрии напряжений по обратной последовательности в точках общего присоединения к электрическим сетям равны 2,0 и 4,0 % соответственно.

5.5.2.Нормально допустимое и предельно допустимое значения коэффициента несимметрии напряжений по нулевой последовательности в точках общего присоединения к четырехпроводным электрическим сетям с номинальным напряжением 0,38 кВ равны 2,0 и 4,0 % соответственно.

5.6.Отклонение частоты

Отклонение частоты напряжения переменного тока в электрических сетях характеризуется показателем отклонения частоты, для которого установлены следующие нормы:

- нормально допустимое и предельно допустимое значения отклонения частоты равны ±0,2 и ±0,4 Гц соответственно.

5.7.Провал напряжения

Провал напряжения характеризуется показателем длительности провала напряжения, для которого установлена следующая норма:

- предельно допустимое значение длительности провала напряжения в электрических сетях напряжением до 20 кВ включительно равно 30 с.Длительность автоматически устраняемого провала напряжения в любой точке присоединения к электрическим сетям определяется выдержками времени релейной защиты и автоматики.

Статистические данные, характеризующие провалы напряжения в электрических сетях России напряжением 6 - 10 кВ, и аналогичные данные по электрическим сетям стран Европейского Союза, приведены в приложении Г.

5.8. Импульс напряжения

Импульс напряжения характеризуется показателем импульсного напряжения.

Значения импульсных напряжений для грозовых и коммутационных импульсов, возникающих в электрических сетях энергоснабжающей организации, приведены в приложении Д.

5.9. Временное перенапряжение

Временное перенапряжение характеризуется показателем коэффициента временного перенапряжения.

Значения коэффициентов временных перенапряжений, возникающих в электрических сетях энергоснабжающей организации, приведены в приложении Д.

6.ОЦЕНКА СООТВЕТСТВИЯ ПОКАЗАТЕЛЕЙ КЭ УСТАНОВЛЕННЫМ НОРМАМ В УСЛОВИЯХ ЭКСПЛУАТАЦИИ
6.1. Для определения соответствия значений измеряемых показателей КЭ, за исключением длительности провала напряжения, импульсного напряжения, коэффициента временного перенапряжения, нормам настоящего стандарта устанавливается минимальный интервал времени измерений, равный 24 ч, соответствующий расчетному периоду по 5.1.

6.2. Наибольшие значения размаха изменения напряжения и дозы фликера, определяемые в течение минимального интервала времени измерений по 6.1, не должны превышать предельно допустимых значений, установленных в 5.3.

Наибольшие значения коэффициента искажения синусоидальности кривой напряжения, коэффициента n-ой гармонической составляющей напряжения, коэффициента несимметрии напряжений по обратной последовательности и коэффициента несимметрии напряжений по нулевой последовательности, определяемые в течение минимального интервала времени измерений по 6.1, не должны превышать предельно допустимые значения, установленные в 5.4 - 5.5 соответственно, а значения тех же показателей КЭ, определяемые с вероятностью 95 % за тот же период измерений, не должны превышать нормально допустимые значения, установленные в 5.4 - 5.5 соответственно.

Наибольшие и наименьшие значения установившегося отклонения напряжения и отклонения частоты, определяемые с учетом знака в течение расчетного периода времени по 6.1, должны находиться в интервале, ограниченном предельно допустимыми значениями, установленными в 5.2 и 5.6 соответственно, а верхнее и нижнее значения этих показателей КЭ, являющиеся границами интервала, в котором с вероятностью 95 % находятся измеренные значения показателей КЭ, должны находиться в интервале, ограниченном нормально допустимыми значениями, установленными в 5.2 и 5.6 соответственно.

6.3.Общая продолжительность измерений показателей КЭ, за исключением указанных в 5.7 - 5.9, должна быть выбрана с учетом обязательного включения характерных для измеряемых показателей КЭ рабочих и выходных дней. Рекомендуемая общая продолжительность измерений составляет 7 суток Сопоставление показателей КЭ с нормами настоящего стандарта необходимо производить за каждые сутки общей продолжительности измерений отдельно. Способы сопоставления измеряемых показателей КЭ с нормами настоящего стандарта приведены в приложении Б.

6.4. Оценку соответствия значений показателей КЭ, за исключением длительности провала напряжения, импульсного напряжения и коэффициента временного перенапряжения, нормам настоящего стандарта следует проводить с периодичностью, установленной в приложении Е.

Кроме того, указанную оценку следует проводить по требованию энергоснабжающей организации или потребителя, а также до и после подключения нового потребителя по требованию одной из указанных сторон.

6.5. Оценку соответствия длительностей провалов напряжения в точках общего присоединения потребителей к сети энергоснабжающей организации норме настоящего стандарта следует проводить путем наблюдений и регистрации провалов напряжения в течение длительного периода времени.

Допускается такую оценку проводить путем расчета по суммарной длительности выдержек времени устройств релейной защиты, автоматики и коммутационных аппаратов, установленных в соответствующих электрических сетях энергоснабжающей организации.

6.6. Получение данных об импульсах и кратковременных перенапряжениях следует проводить путем длительного наблюдения и регистрации.
Извлечение из «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций (Утверждена Приказом Минэнерго России от 30 июня 2003 года № 280)».

2.2.Классификация зданий и сооружений по устройству молниезащиты

Классификация объектов определяется по опасности ударов молнии для самого объекта и его окружения.

Непосредственное опасное воздействие молнии - это пожары, механические повреждения, травмы людей и животных, а также повреждения электрического и электронного оборудования. Последствиями удара молнии могут быть взрывы и выделение опасных продуктов - радиоактивных и ядовитых химических веществ, а также бактерий и вирусов.

Удары молнии могут быть особо опасны для информационных систем, систем управления, контроля и электроснабжения. Для электронных устройств, установленных в объектах разного назначения, требуется специальная защита.

Рассматриваемые объекты могут подразделяться на обычные и специальные.

Обычные объекты - жилые и административные строения, а также здания и сооружения высотой не более 60 м, предназначенные для торговли, промышленного производства, сельского хозяйства.

Специальные объекты:

объекты, представляющие опасность для непосредственного окружения;

объекты, представляющие опасность для социальной и физической окружающей среды (объекты, которые при поражении молнией могут вызвать вредные биологические, химические и радиоактивные выбросы);

прочие объекты, для которых может предусматриваться специальная молниезащита, например строения высотой более 60 м, игровые площадки,

временные сооружения, строящиеся объекты.

При строительстве и реконструкции для каждого класса объектов требуется определить необходимые уровни надежности защиты от прямых ударов молнии (ПУМ).Например, для обычных объектов может быть предложено четыре уровня надежности защиты.
УРОВНИ ЗАЩИТЫ ОТ ПУМ ДЛЯ ОБЫЧНЫХ ОБЪЕКТОВ


Уровень защиты

Надежность защиты от ПУМ

I

0,98

II

0,95

III

0,90

IV

0,80


Для специальных объектов минимально допустимый уровень надежности защиты от ПУМ устанавливается в пределах 0,9 - 0,999 в зависимости от степени его общественной значимости и тяжести ожидаемых последствий от ПУМ по согласованию с органами государственного контроля.

По желанию заказчика в проект может быть заложен уровень надежности, превышающий предельно допустимый.
3.ЗАЩИТА ОТ ПРЯМЫХ УДАРОВ МОЛНИИ

3.1.Комплекс средств молниезащиты

Комплекс средств молниезащиты зданий или сооружений включает в себя устройства защиты от прямых ударов молнии (внешняя молниезащитная система - МЗС) и устройства защиты от вторичных воздействий молнии (внутренняя МЗС).В частных случаях молниезащита может содержать только внешние или только внутренние устройства.В общем случае часть токов молнии протекает по элементам внутренней молниезащиты.

Внешняя МЗС может быть изолирована от сооружения (отдельно стоящие молниеотводы - стержневые или тросовые, а также соседние сооружения, выполняющие функции естественных молниеотводов) или может быть установлена на защищаемом сооружении и даже быть его частью.

Внутренние устройства молниезащиты предназначены для ограничения электромагнитных воздействий тока молнии и предотвращения искрений внутри защищаемого объекта.

Токи молнии, попадающие в молниеприемники, отводятся в заземлитель через систему токоотводов (спусков) и растекаются в земле.

3.2.Внешняя молниезащитная система

Внешняя МЗС в общем случае состоит из молниеприемников, токоотводов и заземлителей.В случае специального изготовления их материал и сечения должны удовлетворять требованиям.
МАТЕРИАЛ И МИНИМАЛЬНЫЕ СЕЧЕНИЯ ЭЛЕМЕНТОВ ВНЕШНЕЙ МЗС


Уровень защиты

Материал

Сечение, кв.мм

молние-приемника

токоотвода

заземлителя

I - IV

Сталь

50

50

80

I – IV

Алюминий

70

25

Не применяется

I - IV

Медь

35

16

50


Примечание.Указанные значения могут быть увеличены в зависимости от повышенной коррозии или механических воздействий.
3.2.1.Молниеприемники

3.2.1.1.Общие соображения

Молниеприемники могут быть специально установленными, в том числе на объекте, либо их функции выполняют конструктивные элементы защищаемого объекта;в последнем случае они называются естественными молниеприемниками.

Молниеприемники могут состоять из произвольной комбинации следующих элементов:стержней, натянутых проводов (тросов), сетчатых проводников (сеток).

3.2.1.2.Естественные молниеприемники

Следующие конструктивные элементы зданий и сооружений могут рассматриваться как естественные молниеприемники:

а) металлические кровли защищаемых объектов при условии, что:

электрическая непрерывность между разными частями обеспечена на долгий срок;

толщина металла кровли составляет не менее величины t, если необходимо предохранить кровлю от повреждения или прожога;

толщина металла кровли составляет не менее 0,5 мм, если ее необязательно защищать от повреждений и нет опасности воспламенения находящихся под кровлей горючих материалов;

кровля не имеет изоляционного покрытия.При этом небольшой слой антикоррозионной краски, или слой 0,5 мм асфальтового покрытия, или слой 1 мм пластикового покрытия не считается изоляцией;

неметаллические покрытия на/или под металлической кровлей не выходят за пределы защищаемого объекта;

б) металлические конструкции крыши (фермы, соединенная между собой стальная арматура);

в) металлические элементы типа водосточных труб, украшений, ограждений по краю крыши и т.п., если их сечение не меньше значений, предписанных для обычных молниеприемников;

г) технологические металлические трубы и резервуары, если они выполнены из металла толщиной не менее 2,5 мм и проплавление или прожог этого металла не приведет к опасным или недопустимым последствиям;

д) металлические трубы и резервуары, если они выполнены из металла толщиной не менее значения t, и если повышение температуры с внутренней стороны объекта в точке удара молнии не представляет опасности.

ТОЛЩИНА КРОВЛИ, ТРУБЫ ИЛИ КОРПУСА РЕЗЕРВУАРА,

ВЫПОЛНЯЮЩИХ ФУНКЦИИ ЕСТЕСТВЕННОГО МОЛНИЕПРИЕМНИКА


Уровень защиты

Материал

Толщина t, мм, не менее

I - IV

Железо

4

I - IV

Медь

5

I - IV

Алюминий

7


3.2.2.Токоотводы

3.2.2.1.Общие соображения

В целях снижения вероятности возникновения опасного искрения токоотводы должны располагаться таким образом, чтобы между точкой поражения и землей:

а) ток растекался по нескольким параллельным путям;

б) длина этих путей была ограничена до минимума.

3.2.2.2.Расположение токоотводов в устройствах молниезащиты, изолированных от защищаемого объекта

Если молниеприемник состоит из стержней, установленных на отдельно стоящих опорах (или одной опоре), на каждую опору должен быть предусмотрен минимум один токоотвод.

Если молниеприемник состоит из отдельно стоящих горизонтальных проводов (тросов) или из одного провода (троса), на каждый конец троса требуется минимум по одному токоотводу.

Если молниеприемник представляет собой сетчатую конструкцию, подвешенную над защищаемым объектом, на каждую ее опору требуется не менее одного токоотвода.Общее количество токоотводов должно быть не менее двух.

3.2.2.3.Расположение токоотводов при неизолированных устройствах молниезащиты

Токоотводы располагаются по периметру защищаемого объекта таким образом, чтобы среднее расстояние между ними было не меньше значений, приведенных в табл.
СРЕДНИЕ РАССТОЯНИЯ МЕЖДУ ТОКООТВОДАМИ

В ЗАВИСИМОСТИ ОТ УРОВНЯ ЗАЩИЩЕННОСТИ


Уровень защиты

Среднее расстояние, м

I

10

II

15

III

20

IV

25

Токоотводы соединяются горизонтальными поясами вблизи поверхности земли и через каждые 20 м по высоте здания.

3.2.2.4.Указания по размещению токоотводов

Желательно, чтобы токоотводы равномерно располагались по периметру защищаемого объекта.По возможности они прокладываются вблизи углов зданий.

Не изолированные от защищаемого объекта токоотводы прокладываются следующим образом:

если стена выполнена из негорючего материала, токоотводы могут быть закреплены на поверхности стены или проходить в стене;

если стена выполнена из горючего материала, токоотводы могут быть закреплены непосредственно на поверхности стены, так чтобы повышение температуры при протекании тока молнии не представляло опасности для материала стены;

если стена выполнена из горючего материала и повышение температуры токоотводов представляет для него опасность, токоотводы должны располагаться таким образом, чтобы расстояние между ними и защищаемым объектом всегда превышало 0,1 м.Металлические скобы для крепления токоотводов могут быть в контакте со стеной.

Не следует прокладывать токоотводы в водосточных трубах.

Рекомендуется размещать токоотводы на максимально возможных расстояниях от дверей и окон.

Токоотводы прокладываются по прямым и вертикальным линиям, так чтобы путь до земли был по возможности кратчайшим.Не рекомендуется прокладка токоотводов в виде петель.

3.2.2.5.Естественные элементы токоотводов

Следующие конструктивные элементы зданий могут считаться естественными токоотводами:

а) металлические конструкции при условии, что:

электрическая непрерывность между разными элементами является долговечной и соответствует требованиям п.3.2.4.2;

они имеют не меньшие размеры, чем требуются для специально предусмотренных токоотводов.Металлические конструкции могут иметь изоляционное покрытие;

б) металлический каркас здания или сооружения;

в) соединенная между собой стальная арматура здания или сооружения;

г) части фасада, профилированные элементы и опорные металлические конструкции фасада при условии, что их размеры соответствуют указаниям, относящимся к токоотводам, а их толщина составляет не менее 0,5 мм.

Металлическая арматура железобетонных строений считается обеспечивающей электрическую непрерывность, если она удовлетворяет следующим условиям:

примерно 50% соединений вертикальных и горизонтальных стержней выполнены сваркой или имеют жесткую связь (болтовое крепление, вязка проволокой);

электрическая непрерывность обеспечена между стальной арматурой различных заранее заготовленных бетонных блоков и арматурой бетонных блоков, подготовленных на месте.

В прокладке горизонтальных поясов нет необходимости, если металлические каркасы здания или стальная арматура железобетона используются как токоотводы.

3.2.3.Заземлители

3.2.3.1.Общие соображения

Во всех случаях, за исключением использования отдельно стоящего молниеотвода, заземлитель молниезащиты следует совместить с заземлителями электроустановок и средств связи.Если эти заземлители должны быть разделены по каким-либо технологическим соображениям, их следует объединить в общую систему с помощью системы уравнивания потенциалов.

3.2.3.2.Специально прокладываемые заземляющие электроды

Целесообразно использовать следующие типы заземлителей:один или несколько контуров, вертикальные (или наклонные) электроды, радиально расходящиеся электроды или заземляющий контур, уложенный на дне котлована, заземляющие сетки.

Сильно заглубленные заземлители оказываются эффективными, если удельное сопротивление грунта уменьшается с глубиной и на большой глубине оказывается существенно меньше, чем на уровне обычного расположения.

Заземлитель в виде наружного контура предпочтительно прокладывать на глубине не менее 0,5 м от поверхности земли и на расстоянии не менее 1 м от стен.Заземляющие электроды должны располагаться на глубине не менее 0,5 м за пределами защищаемого объекта и быть как можно более равномерно распределенными;при этом надо стремиться свести к минимуму их взаимное экранирование.

Глубина закладки и тип заземляющих электродов выбираются из условия обеспечения минимальной коррозии, а также возможно меньшей сезонной вариации сопротивления заземления в результате высыхания и промерзания грунта.

3.2.3.3.Естественные заземляющие электроды

В качестве заземляющих электродов может использоваться соединенная между собой арматура железобетона или иные подземные металлические конструкции, отвечающие требованиям п.3.2.2.5.Если арматура железобетона используется как заземляющие электроды, повышенные требования предъявляются к местам ее соединений, чтобы исключить механическое разрушение бетона.Если используется преднапряженный бетон, следует учесть возможные последствия протекания тока молнии, который может вызвать недопустимые механические нагрузки.

3.2.4.Крепление и соединения элементов внешней МЗС

3.2.4.1.Крепление

Молниеприемники и токоотводы жестко закрепляются, так чтобы исключить любой разрыв или ослабление крепления проводников под действием электродинамических сил или случайных механических воздействий (например, от порыва ветра или падения снежного пласта).

3.2.4.2.Соединения

Количество соединений проводника сводится к минимальному.Соединения выполняются сваркой, пайкой, допускается также вставка в зажимной наконечник или болтовое крепление.
3.3.Выбор молниеотводов

3.3.1.Общие соображения

Выбор типа и высоты молниеотводов производится исходя из значений требуемой надежности Рз.Объект считается защищенным, если совокупность всех его молниеотводов обеспечивает надежность защиты не менее Рз.

Во всех случаях система защиты от прямых ударов молнии выбирается так, чтобы максимально использовались естественные молниеотводы, а если обеспечиваемая ими защищенность недостаточна - в комбинации со специально установленными молниеотводами.

В общем случае выбор молниеотводов должен производиться при помощи соответствующих компьютерных программ, способных вычислять зоны защиты или вероятность прорыва молнии в объект (группу объектов) любой конфигурации при произвольном расположении практически любого числа молниеотводов различных типов.

При прочих равных условиях высоту молниеотводов можно снизить, если вместо стержневых конструкций применять тросовые, особенно при их подвеске по внешнему периметру объекта.

Если защита объекта обеспечивается простейшими молниеотводами (одиночным стержневым, одиночным тросовым, двойным стержневым, двойным тросовым, замкнутым тросовым), размеры молниеотводов можно определять, пользуясь заданными в настоящем нормативе зонами защиты.

В случае проектирования молниезащиты для обычного объекта возможно определение зон защиты по защитному углу или методом катящейся сферы согласно стандарту Международной электротехнической комиссии (IEC 1024) при условии, что расчетные требования Международной электротехнической комиссии оказываются более жесткими, чем требования настоящей Инструкции.

3.3.2.Типовые зоны защиты стержневых и тросовых молниеотводов

3.3.2.1.Зоны защиты одиночного стержневого молниеотвода

Стандартной зоной защиты одиночного стержневого молниеотвода высотой h является круговой конус высотой h0 < h, вершина которого совпадает с вертикальной осью молниеотвода (рис.3.1) <*>.Габариты зоны определяются двумя параметрами:высотой конуса h0 и радиусом конуса на уровне земли r0.

Учебно-справочный материал

Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации: «Работы по подготовки проектов внутреннего электроснабжения и слаботочных систем на объектах использования атомной энергии. С-4.3».
1   ...   10   11   12   13   14   15   16   17   ...   23

Похожие:

Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon Учебно-справочный материал для самостоятельной проработки слушателями...
«Работы по организации строительства, реконструкции капитального ремонта и осуществления строительного контроля, в том числе, на...
Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon Справочная информация по огм-30Е
Настоящий информационно-справочный материал предназначен для общего ознакомления с аппаратурой первичного мультиплексора огм-30Е...
Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon Справочный материал на областное собрание актива по итогам социально-экономического...
Нормотворческая деятельность органов государственной власти Магаданской области 10
Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon V учебно-исследовательской конференции учащихся Шаховского муниципального района
Муниципальное бюджетное общеобразовательное учреждение дополнительного профессионального образования (повышения квалификации) специалистов...
Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon И двойном мини-трампе
Раскрывается содержание учебно-тренировочной и воспитательной работы, приводятся примерные планы распределения учебного материала...
Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon Д. Ф. Костина Дополнительный материал к учебному пособию
«Программирование в компьютерных системах»: специфика профессии программиста. Дополнительный материал. Учебно-методическое пособие...
Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon Учебное пособие содержит материал авторского учебного курса «Пе­дагогика здоровья»
Академии повышения квалификации и профессиональной переподготовки работников образования, доцент Н. К. Смирнов; кандидат педагогических...
Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon Учебно-наглядные пособия кабинета №2-23 Наглядно-дидактический материал

Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon Учебно-методический комплекс повышения квалификации слушателей, осуществляющих...
Учебно-научный центр государственного строительства и подготовки управленческих кадров
Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon Учебно-методический комплекс для студентов специальности 080100. 62
Данный учебно-методический комплекс предназначен для оказания помощи студентам в более эффективном освоении программы учебного курса...
Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon Учебно-методический центр по го и чс материал для проведения занятий...
Предлагаемый материал рекомендуется в качестве пособия для проведения занятий по темам программы дополнительной подготовки учащихся...
Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon Программа повышения квалификации врачей «новые технологии диагностики,...
Дополнительная профессиональная программа профессиональной переподготовки (повышения квалификации) является учебно-методическим нормативным...
Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon Образовательная программа для подготовки, переподготовки и повышения...
Учебные программы разработаны учебно-методическим кабинетом наноо уц «Энергетик» и предназначены для подготовки, переподготовки и...
Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon Учебно-методического комплекса дисциплины рабочая программа учебной...
Учебно-методический комплекс дисциплины «Иностранный язык» разработан для студентов 1-3 курса по специальности 240902. 65 «Пищевая...
Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon Учебно-тематический план и программа повышения квалификации по курсу...
Учебно-тематический план и программа повышения квалификации по курсу «Строительство и качество устройства железнодорожных и трамвайных...
Учебно-справочный материал Учебно-справочный материал для самостоятельной проработки слушателями курса повышения квалификации icon Учебно-методическое обеспечение дисциплины Нормативный материал Декларация...
Конституция (Основной закон) Российской Федерации. М., 2008. 112 с. Гл. 5,6,21,22

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск