Программа дисциплины «Безопасность жизнедеятельности»


Скачать 3.23 Mb.
Название Программа дисциплины «Безопасность жизнедеятельности»
страница 8/20
Тип Программа дисциплины
rykovodstvo.ru > Руководство эксплуатация > Программа дисциплины
1   ...   4   5   6   7   8   9   10   11   ...   20

2.4. Возможные последствия аварий радиационно опасных объектов, особенности радиоактивного загрязнения при авариях на радиационно опасных объектах. Особенности защиты населения при авариях на радиационно опасных объектах

   Радиационно-опасный объект (РОО) - объект, при повреждении, разрушении и аварии которого может произойти радиоактивное загрязнение местности, акватории, воздушного пространства и др. объектов, расположенных на них, способное оказать влияние на действия и боеспособность войск, жизнедеятельность населения и промышленное производство. Это может привести к массовому облучению ионизирующим излучением людей, животных и растений.
   РОО представляют опасность ввиду возможного загрязнения окружающей среды, поражения личного состава, населения, находящихся на местности, при разрушении объектов, сопровождающихся выбросом в окружающую среду радиоактивных веществ.
   РОО являются вещества, устройства или технологические процессы, имеющие в своем составе (содержащие) радионуклиды в количествах, подлежащих в соответствии с п.п. 1.7 и 1.8 «Основных санитарных правил обеспечения радиационной безопасности (ОСПОРБ-99)» обязательному учету и контролю, а также требующих специального разрешения на владение ими и их использование. В том случае, если эти объекты предназначены для осуществления цепных ядерных реакций или способны при определенных условиях к их неконтролируемому возникновению, они являются одновременно радиационно и ядерно опасными.
   Согласно п. 3.1 «Основных санитарных правил обеспечения радиационной безопасности (ОСПОРБ-99)» установлено четыре категории РОО:
   I - объекты, при аварии на которых возможно их радиационное воздействие на население и могут потребоваться меры по его защите;
   II - радиационное воздействие при аварии ограничивается территорией санитарно-защитной зоны (СЗЗ);
   III - радиационное воздействие при аварии ограничивается территорией объекта. К радиационно опасным объектам относятся:
   а) по признаку «объекты использования атомной энергии»:
   - ядерные установки - сооружения и комплексы с ядерными реакторами, в том числе атомные станции (АЭС). Суда и другие плавсредства, космические и летательные аппараты, транспортные и транспортабельные средства. Сооружения и комплексы с промышленными, экспериментальными и исследовательскими ядерными реакторами, критическими и подкритическими ядерными стендами. Сооружения, комплексы, полигоны, установки и устройства с ядерными зарядами для использования в мирных целях и другие содержащие ядерные материалы сооружения, комплексы, установки для производства, использования, переработки, транспортирования ядерного топлива и ядерных материалов;
   - радиационные источники - не относящиеся к ядерным установкам комплексы, установки, аппараты, оборудование и изделия, в которых содержатся радиоактивные вещества или генерируется ионизирующее излучение;
   - пункты хранения ядерных материалов и радиоактивных веществ, хранилища радиоактивных отходов (далее - пункты хранения)
   - не относящиеся к ядерным установкам и радиационным источникам стационарные объекты и сооружения, предназначенные для хранения ядерных материалов и радиоактивных веществ, хранения или захоронения радиоактивных отходов (РАО);
   - ядерные материалы - материалы, содержащие или способные воспроизвести делящиеся (расщепляющиеся) ядерные вещества;
   - радиоактивные вещества - не относящиеся к ядерным материалам вещества, испускающие ионизирующее излучение;
   - радиоактивные отходы - ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается;
   б) по территориально-производственному признаку:
   - объекты ядерного комплекса (ядерно-топливного цикла (ЯТЦ), атомной энергетики, ядерного оружейного комплекса);
   - базы хранения ядерного оружия;
   - территории и водоемы, загрязненные радионуклидами в результате имевших место радиационных аварий, ядерных взрывов в мирных целях, производственной деятельности и т.п.
   Предприятия ЯТЦ осуществляют добычу урана, его обогащение (по 235U), изготовление ядерного топлива, переработку отработанного ядерного топлива и РАО, хранение ядерного топлива, РАО и захоронение РАО. Предприятия ЯТЦ по производственному признаку делятся на следующие группы:
   - добывающие уран предприятия;
   - предприятия по разделению изотопов урана;
   - предприятия по изготовлению ядерного топлива;
   - предприятия по переработке отработанного ядерного топлива;
   - объекты захоронения РАО.
   К добывающим уран предприятиям относятся объекты, осуществляющие добычу урановой руды и ее переработку механическим и гидрометаллургическим способами, и предприятия по подземному выщелачиванию урана.
   Основные типы радиационных аварий на этих предприятиях - выброс (разброс) урановой руды при транспортировке (или концентрата) и разлив растворов урана при авариях трубопроводов. В случае аварий на добывающих уран предприятиях принятие экстренных мер по защите населения и ликвидации их последствий, как правило, не требуется, а загрязнения ураном не носят катастрофического характера даже при больших масштабах выбросов из-за малой радиоактивности естественного урана.
   Предприятия по разделению изотопов урана (обогащению природного урана) и изготовлению ядерного топлива используют в технологических процессах как физические, так и химические методы. При этом возможны следующие типы аварий:
   - самоподдерживающая цепная реакция деления (СЦР) при проведении работ с растворами, порошками и изделиями из компактного урана;
   - взрывы, в результате которых происходит выброс радиоактивных материалов в окружающую среду;
   - разливы растворов, содержащих уран;
   - пожары с возгоранием соединений, в которых содержится уран, и выбросом их в окружающую среду. Из всех этих аварий радиационную опасность для населения могут представлять газоаэрозольный выброс в результате СЦР, содержащий продукты деления урана, а также взрывы и пожары на различных участках технологических процессов.
   Переработка отработанного ядерного топлива осуществляется на специальных перерабатывающих предприятиях (радиохимических заводах). В ходе технологических процессов переработки осуществляется разделка тепловыделяющих элементов, растворение топлива, химическое выделение урана, плутония, цезия, стронция и других радионуклидов.
   Основными причинами радиационных аварий на радиохимических заводах являются термохимические взрывы, сопровождаемые выбросом содержимого технологических аппаратов (урана и продуктов его деления), в том числе и за пределы санитарнозащитной зоны (СЗЗ) предприятия.
   Часть РАО радиохимических заводов и других производств направляются на объекты захоронения. Перед захоронением они, как правило, подвергаются дополнительной переработке. Низко- и среднеактивные отходы, характеризующиеся большими объемами, направляются на переработку, общей тенденцией которой является максимально возможное уменьшение их объема при помощи технологических процессов сорбции, коагуляции, выпаривания, прессовки и т.д. с последующим включением в матрицы (цемент, битум, смолы и т.д.). Хранение низко- и среднеактивных отходов осуществляется в бетонных емкостях с последующим захоронением в естественных и искусственных полостях. Высокоактивные отходы выдерживаются во временных хранилищах и по истечении определенного времени отправляются на захоронение. Классификация жидких и твердых радиоактивных отходов по удельной радиоактивности и по уровню радиоактивного загрязнения представлена в приложении 5.
   Наиболее вероятной причиной радиационных аварий на объектах переработки и хранения РАО являются термобарические взрывы с выбросом содержимого технологических аппаратов, в том числе за пределы СЗЗ.
   Сегодня в стране действует 12 предприятий ядерно-топливного цикла, в том числе 3-мя радиохимическими производствами. Учитывая, что радиационные аварии на этой группе предприятий в отдельных случаях могут носить крупномасштабный характер, следует относить их к особо опасным производствам. Это обусловлено наличием большого количества специфических факторов, определяющих потенциальную опасность радиохимических предприятий. К ним можно отнести:
   - неконтролируемое накопление делящихся веществ в отдельных фазах производства;
   - образование в ходе технологических процессов взрывопожароопасных газовых смесей;
   - большое количество самовоспламеняющихся и самовозгараемых материалов;
   - наличие химических процессов, протекающих с высоким экзотермическим эффектом; использование оборудования с опасной геометрией и другие.
   Всего в течение 40 лет на радиохимических заводах произошло более 20 серьезных аварий. Большая их часть является следствием неконтролируемых физико-химических процессов, меньшая - результатом развития самопроизвольной цепной ядерной реакции.
   Наибольшую вероятность возникновения и значительные радиационные последствия имеют аварии при транспортировании ядерных материалов, прежде всего, гексафторида урана (ГФУ) и отработанного ядерного топлива (ОЯТ) водо-водяных энергетических реакторов (ВВЭР). Наиболее опасны, при этом, попадания контейнеров с этими ядерными материалами в зону пожара.
   К объектам атомной энергетики относятся АЭС, на которых тепло, выделяющееся в ядерном реакторе, используется для получения водяного пара, вращающего турбогенератор для производства электрической энергии.
   АЭС включает один или несколько ядерных энергетических реакторов. На российских АЭС работают следующие типы ядерных реакторов:
   - водо-водяные энергетические реакторы электрической мощностью 440 МВт (ВВЭР-440) и 1000 МВт (ВВЭР-1000) на тепловых нейтронах; 105
   - реакторы большой мощности, канальные, электрической мощностью 1000 МВт (РБМК-1000), графитовые, на тепловых нейтронах;
   - реакторы жидкометаллические на быстрых нейтронах электрической мощностью 600 МВт (БН-600);
   - реакторы энергетические графитовые паровые на тепловых нейтронах, электрической мощностью 12 МВт (ЭГП-12).
   В России действуют 29 энергоблоков на 9 атомных электростанциях.
   Типы ядерных реакторов, эксплуатирующихся на АЭС в России, представлены в прил. 1, их основные физико-технические характеристики - в прил. 2.
   Характеризуя состояние эксплуатации действующих российских АЭС, следует отметить, что функционирование их осуществляется, в целом, в соответствии с правилами и нормами безопасности. С учетом накопленного опыта работы станций, а также анализа причин и последствий имевших место аварий, разработаны и реализуются на станциях мероприятия по повышению их надежности и безопасности, при этом учитываются состояние и особенности каждого конкретного энергоблока.
   Вместе с тем, на сегодня ни одна из действующих АЭС не имеет процедурно законченного обоснования их безопасности и анализа возможных последствий аварийных ситуаций.
   Вызывает беспокойство то, что из 29 действующих энергоблоков только 7 (реакторы - ВВЭР-1000) отличаются достаточной надежностью. Отрицательной особенностью является и то, что большинство российских АЭС расположены в густонаселенной Европейской части страны, в их 30-километровых зонах проживает более 4 миллионов человек.
   Положение на АЭС усугубляется тем, что на большинстве станций сегодня имеет место высокая, свыше 65%, степень износа основных производственных фондов. Слабо ведутся работы по модернизации, ремонту и профилактике оборудования. В силу социальных причин наблюдается падение производственной и технологической дисциплины.
   В принципе, можно констатировать, что вероятность за- проектных аварий на российских АЭС в настоящее время, в целом, значительно не уменьшилась, а по ряду энергоблоков, где не выполнен комплекс дополнительных мер безопасности, эта вероятность повысилась.
   Среди техногенных источников ЧС наибольшую опасность по тяжести поражения, масштабам долговременности действия поражающих факторов представляют радиационные катастрофы.
   Наглядным примером этому является авария на Чернобыльской АЭС (1986 г.), которая по совокупности своих последствий стала самой крупной катастрофой современности, затронувшей судьбы миллионов людей не только в бывшем СССР, но и за его пределами.
   Достаточно сказать, что радиоактивному загрязнению с плотностью по цезию-137 более 1 Ки/км2 только в Российской Федерации подверглись территории 19 субъектов Российской Федерации, общей площадью около 60 тыс.км2, на которых проживает почти 3 млн. человек, в том числе более 600 тыс. детей. Ликвидация последствий этой катастрофы потребовала беспрецедентной в мирное время мобилизации сил и ресурсов страны.
   Важнейшими уроками Чернобыльской катастрофы были:
   - осознание возможности возникновения катастроф, протекающих по неисследованным, незапланированным, запроектным сценариям и требующих нестандартных действий по их локализации и ликвидации;
   - недооценка опасностей радиационных аварий, их факторов и параметров воздействия на людей и окружающую среду;
   - отсутствие системы научной поддержки принятия решений локализации и ликвидации аварий;
   - отсутствие заранее созданной информационной базы данных по основным характеристикам радиационно-опасных объектов и окружающих их территорий;
   - недостаточный учет психологических факторов при действиях по оповещению и эвакуации населения из мест радиационных аварий;
   - необходимость повышения в системе защитных мероприятий роли радиационной разведки, оповещения и информирования населения об обстановке и действиях в сложившихся условиях;
   - низкая оснащенность сил, привлекаемых к ликвидации последствий аварии, средствами индивидуальной защиты, радиационной разведки, дозиметрического контроля и специальными транспортными средствами, а также материальными ресурсами;
   - отсутствие заблаговременно отработанных прав и мер ответственности участников спасательных операций, их гарантий и льгот.
   Сегодня вероятность аварий, подобных Чернобыльской, на АЭС с реакторами РБМК, ВВЭР-440, на промышленных и ряде исследовательских реакторов составляет, по оценкам ряда экспертов, 10-3 реакторо-лет при нормативной величине 10-6.. 10-7 реакторо-лет, т.е. на 3-4 порядка выше.
   Наиболее тяжелыми радиационными авариями на АЭС, сопровождаемыми выбросом урана и продуктов его деления за пределы СЗЗ и радиоактивным загрязнением окружающей среды, являются запроектные аварии, обусловленные разгерметизацией первого контура реактора с разрушением или без разрушения активной зоны.
   Радиационные аварии имеют место на судах и кораблях, космических аппаратах с ядерными реакторами, на объектах с промышленными, экспериментальными и исследовательскими ядерными реакторами.
   Корабельные объекты с ЯЭУ оснащаются реакторами легководного типа. Принципиальными их отличиями от реакторов АЭС являются: использование в качестве топлива более обогащенного урана, сравнительно малые размеры, высокая степень защиты.
   Характерной причиной радиационных аварий на корабельных ЯЭУ является разгерметизация первого контура реактора с выбросом при определенных условиях продуктов деления урана в окружающую среду.
   На существующих космических объектах с ЯЭУ используются малогабаритные ядерные реакторы с высоким обогащением природного урана, на быстрых нейтронах, с жидкометаллическим теплоносителем, электрической мощностью несколько МВт.
   Особенности последствий радиационных аварий космических объектов с ЯЭУ в полете обуславливаются разрушением и сгоранием летательного аппарата при входе в плотные слои атмосферы. Выпадением его радиоактивных остатков, в том числе отдельных высокоактивных, на значительном пространстве, исчисляемом десятками тысяч километров квадратных.
   Заслуживают внимания промышленные и исследовательские ядерные установки. Характерной особенностью этих установок является их размещение, как правило, непосредственно в жилых производственных зонах крупных промышленных центров (Москва, Санкт-Петербург, Димитровград и др.). В частности, в г. Москве и Московской области в настоящее время эксплуатируется более 50- ти ядерных исследовательских установок различного назначения.
   Следует отметить, что оборудование и технологические системы большинства исследовательских ядерных установок морально и физически изношены, нормативно-технические документы обеспечения безопасности использования этих установок либо устарели, либо отсутствуют, продолжается утечка из состава эксплуатационного персонала высококвалифицированных кадров, не имеется достаточного финансирования для необходимой реконструкции установок.
1   ...   4   5   6   7   8   9   10   11   ...   20

Похожие:

Программа дисциплины «Безопасность жизнедеятельности» icon Рабочая программа дисциплины «безопасность жизнедеятельности» Направление подготовки
«Безопасность жизнедеятельности»: Рабочая программа дисциплины / О. Г. Турлыбекова. – Челябинск: оу во «Южно-Уральский институт управления...
Программа дисциплины «Безопасность жизнедеятельности» icon Минтранс россии) федеральное агентство воздушного транспорта (росавиация)...
Безопасность жизнедеятельности: Программа, методические указания по изучению дисциплины и задания на контрольную работу / Университета...
Программа дисциплины «Безопасность жизнедеятельности» icon Безопасность жизнедеятельности учебное пособие
В настоящем учебном пособии впервые рассматривается прикладная направленность дисциплины «Безопасность жизнедеятельности» в сфере...
Программа дисциплины «Безопасность жизнедеятельности» icon Рабочая программа дисциплины б. 27 Безопасность жизнедеятельности...
Заведующий кафедрой регионального и муниципального управления, к с н., доцент Т. Е. Зерчанинова
Программа дисциплины «Безопасность жизнедеятельности» icon Рабочая программа дисциплины безопасность жизнедеятельности квалификация (степень) выпускника
Значение безопасности в современном мире. Безопасность и демография. Причины проявления опасности. Источники опасности, детерминизм...
Программа дисциплины «Безопасность жизнедеятельности» icon Учебно-методический комплекс дисциплины «безопасность жизнедеятельности»
Умкд «Безопасность жизнедеятельности» часть 1 составлен на основании типовой программы гос впо, гос №215 тех/бак от 23. 03. 2000...
Программа дисциплины «Безопасность жизнедеятельности» icon Программа учебной дисциплины «безопасность жизнедеятельности»
Программа учебной дисциплины является частью профессиональной образовательной программы переподготовки специалистов по профессии
Программа дисциплины «Безопасность жизнедеятельности» icon Программа учебной дисциплины «безопасность жизнедеятельности»
Программа учебной дисциплины является частью профессиональной образовательной программы переподготовки специалистов по профессии
Программа дисциплины «Безопасность жизнедеятельности» icon Общие методические указания к изучению дисциплины “Безопасность жизнедеятельности”...
Курс “Безопасность жизнедеятельности” относится к общепрофессиональным (базовым)
Программа дисциплины «Безопасность жизнедеятельности» icon Конспект лекций лаконично раскрывает содержание и структуру учебной...
Безопасность жизнедеятельности : конспект лекций для студентов очной и заочной форм обучения / сост. В. М. Домашко; Южный федеральный...
Программа дисциплины «Безопасность жизнедеятельности» icon Рабочая программа дисциплины Безопасность жизнедеятельности
Направление подготовки (специальность) 04. 03. 02 «Химия, физика и механика материалов»
Программа дисциплины «Безопасность жизнедеятельности» icon Рабочая программа учебной дисциплины «Безопасность жизнедеятельности»
Рабочая программа учебной дисциплины разработана на основе требований Федерального государственного образовательного стандарта (далее...
Программа дисциплины «Безопасность жизнедеятельности» icon Безопасность жизнедеятельности часть 2 Безопасность технологического оборудования
Безопасность жизнедеятельности. Ч. Безопасность технологического оборудования: Учебное пособие / Гимранов Ф. М., Гаврилов Е. Б
Программа дисциплины «Безопасность жизнедеятельности» icon Рабочая программа дисциплины безопасность жизнедеятельности направление
...
Программа дисциплины «Безопасность жизнедеятельности» icon Методические рекомендации к практическим работам по дисциплине «Безопасность жизнедеятельности»
Учебная дисциплина «Безопасность жизнедеятельности» (БЖ) изучается студентами на третьем курсе. Студенты по окончанию курса сдают...
Программа дисциплины «Безопасность жизнедеятельности» icon Методические рекомендации «Чрезвычайные ситуации, характерные для...
Пособие создано с целью оказания методической помощи руководителям, учителям-организаторам курса "Основы безопасности жизнедеятельности",...

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск