Роль авиационных руководителей в обеспечении безопасности полетов


Скачать 0.86 Mb.
Название Роль авиационных руководителей в обеспечении безопасности полетов
страница 1/5
Тип Документы
rykovodstvo.ru > Руководство ремонт > Документы
  1   2   3   4   5


Безопасность полетов
1. РОЛЬ АВИАЦИОННЫХ РУКОВОДИТЕЛЕЙ В ОБЕСПЕЧЕНИИ БЕЗОПАСНОСТИ ПОЛЕТОВ
За сравнительно короткий срок авиационная промышленность США стала крупнейшей отраслью индустрии страны. Сейчас выпускаются самолеты, скорость которых превышает скорость звука, появились самолеты вертикального взлета, и уже недалеко то время, когда будут созданы летательные аппараты для полетов на Луну и на другие планеты. Однако наряду с этими огромными успехами следует отметить и тот факт, что до сих пор еще слишком мало внимания уделяется выработке конкретных и действенных правил обеспечения безопасности движения самолетов в воздухе и на земле. Повышение безопасности полетов является жизненной необходимостью, поскольку оно служит делу укрепления доверия общественности к авиации.

Безопасность движения самолетов на земле и в воздухе—это важнейший вопрос, касающийся не только транспортной и военной авиации, но также и частной. На всех этапах создания самолета вопросам обеспечения безопасности полетов уделяется самое большое внимание.

Пристальное изучение проблемы безопасности полетов показывает, что многие существующие правила и положения по обеспечению безопасности уже устарели. Если вместо них будут выработаны и внедрены в практику новые правила, отвечающие современным условиям, то это можно будет считать одним из величайших достижений авиации за все время, прошедшее с тех пор, как поднялся в воздух первый самолет.

Повышение безопасности полетов — прямая обязанность авиационных руководителей и летного состава, которые должны объединить свои усилия для достижения максимальных успехов в этой области. Многие считают, что абсолютная безопасность полетов — вещь, практически неосуществимая. Может быть, это и так, но тем не менее мы должны стремиться к тому, чтобы уменьшить количество летных происшествий, аварий и ненужных жертв. Для того чтобы самолет и дальше все прочнее входил в жизнь общества, руководители авиации должны чувствовать свою ответственность в этом отношении и должны стремиться к тому, чтобы превратить в реальность всеобщее желание в отношении максимальной безопасности полетов.

Авиационные руководители непосредственно отвечают за состояние и разработку правил обеспечения безопасности полетов для руководимых ими организаций. В некоторых случаях, например в авиакомпаниях и военной авиации, работа руководства в этой области значительно облегчается в связи с применением правил и инструкций, издаваемых правительством. В области же торговой и промышленной авиации, где действует сравнительно мало правил и инструкций по производству полетов, руководители, как правило, не имеют опыта управления авиацией и не могут определить, что необходимо для обеспечения безопасности полетов, связанных с деятельностью, характерной именно для каждой данной компании (торговой, промышленной и пр.). Однако если поручить одному из членов руководства компании всесторонне и реалистически изучить проблему безопасности полетов по обслуживанию данной компании и энергично внедрить результаты его труда в практику полетов, то этим путем можно было бы обеспечить максимально возможную безопасность полетов самолетов компании.

Безопасность полетов тесно связана с деятельностью. руководства. Без активного участия руководства любая самая эффективная программа обеспечения безопасности полетов не сможет быть полностью осуществлена. Решающим условием успешного осуществления программы предупреждения летных происшествий на земле и в воздухе является серьезное отношение к ней со стороны руководителей авиационной организации. Руководство должно не только разрешить и одобрить проведение в жизнь такой программы, но и организовать ее осуществление, а также контролировать ход ее выполнения. Если руководители хотят, чтобы такая программа была проведена успешно, они должны добиваться ее выполнения.

Авиационные руководители должны требовать постоянной и активной борьбы с летными происшествиями во всех звеньях организации. Это требование может быть разумно выполнено только в том случае, если руководство хорошо знакомо с наиболее эффективными методами анализа причин аварии и борьбы с потенциальными авариями, независимо от того, что является причиной аварии: недостаточная тренировка летного состава или же недостатки, лежащие в конструкции или в эксплуатации материальной части самолета. Руководители должны быть уверены в эффективности и ценности такой программы. Обеспечение безопасности полетов самолетов всех родов авиации, как гражданской, так и военной, не может считаться вопросом второстепенного значения. Повышение безопасности полетов ведет к уменьшению потерь и убытков, а следовательно, к большей эффективности работы авиации.

Руководство вопросами подготовки и тренировки летного состава, технического обслуживания материальной части, наземных средств обеспечения полетов и т. д. может быть поручено специальным отделам во главе с их начальниками; обеспечение же безопасности полетов—это общий вопрос, требующий объединенных усилий ответственных руководителей всех областей авиации. Инициатива в проведении программы обеспечения безопасности должна исходить от исполнительного органа, и ход выполнения программы должен контролироваться представителем высшего руководящего органа.

«Таким образом, в отношении борьбы с летными происшествиями должна быть намечена определенная линия, которая исходит из признания того, что борьба с аварийностью является важнейшей задачей руководящих органов, что в этой борьбе должны быть достигнуты определенные результаты и что для этой цели требуются совместные 'усилия всех работников организации. Высшее руководство должно официально поставить в известность всех работников об этой своей линии. Одновременно должны быть разъяснены детали программы борьбы за безопасность полетов и условия ее выполнения. Должно быть также указано, какой организации поручается проведение этой программы в жизнь, а также лицо из руководящего состава, на которое возложена ответственность за ее выполнение. Текст программы должен быть вывешен на витринах и стендах организации, помещен в печати или же разослан в виде письма соответствующим работникам организаций..
2. ИСПОЛЬЗОВАНИЕ КИСЛОРОДА В ПОЛЕТЕ
Кислород необходим для работы двигателя самолета; он необходим также для функционирования человеческого организма. Недостаток кислорода для человека можно сравнить с недостатком горючего в двигателе самолета — без него наступает критическое состояние, грозящее аварией.

Во многих организациях можно найти пилотов, которые, не задумываясь, летают без кислородного прибора на высотах более 3000 и даже 4500-м. Беспечность, выработавшаяся в течение ряда лет у пилотов в отношении пользования кислородом в «опасной зоне» на высотах от 3000 до 4500 м, происходит от целого ряда причин, основной из которых является незнание пилотами той опасности, которую представляет собой полет без кислорода. Только немногие пилоты, которые испытали на себе вредное действие кислородного голодания, сознают эту опасность. Наиболее опасным действием кислородного голодания является чувство успокоения и благодушия, появляющееся у пилота вследствие помутнения сознания, подобно тому как это бывает у человека, принявшего большую дозу алкоголя. Пилот чувствует себя «исключительно хорошо» и совершенно не сознает того, что его рассудок парализован, а координация его движений нарушена. В тяжелых случаях кислородного голодания человек теряет память, и тогда процесс его мышления почти прекращается.

Действие больших высот на человека выражается: 1) в кислородном голодании (аноксия); 2) в расширении газов внутри организма; 3) в потребности прочистить (для выравнивания давления) среднее ухо и носовые синусы; 4) в выделении из крови растворенных в ней газов и 5) в чувстве холода, усиливающемся с высотой.

В полете кислородное голодание начинается с высоты 1500 м, но, за исключением ухудшения зрения при слабом освещении, пилот не замечает никаких изменений до высоты примерно 3000 м- У физически крепких людей на высоте 5500 м может временно помутиться сознание, но они быстро приходят в себя; физически слабые люди могут обнаруживать признаки кислородного голодания на более малых высотах. Основными симптомами кислородного голодания являются: 1) потеря способности здравого суждения и отсутствие понимания опасности; 2) ложное чувство успокоения; 3) ослабленное внимание, тенденция делать ошибки; 4) сужение поля зрения и ухудшение слуха; 5) вялость и неловкость движений; 6) отсутствие эмоционального равновесия и 7) сильное ослабление зрения в условиях плохой видимости и ночью.

Есть два способа обеспечения пилота достаточным для дыхания количеством кислорода. Первый способ—это герметизация кабины или использование герметического костюма (военные пилоты). Этот способ обеспечивает сравнительно высокое давление воздуха как внутри, так и вне организма. Другой способ основан на использовании кислородного аппарата, подающего кислород в легкие под давлением, немного превышающим наружное давление. Поскольку организм не может выдержать неограниченного повышения внутреннего давления, существует предельная высота применения кислородного прибора. Эта высота равна 12 500 м, в крайнем случае — 13 500 м. Герметическими кабинами оборудованы самолеты авиационных компаний и некоторое количество военных машин. Пилоты остальных самолетов для получения достаточного количества кислорода на больших высотах должны пользоваться кислородными приборами.

«Золотые» правила пользования кислородом

  1. Не летай выше 3000 м без запаса кислорода на самолете.

  2. Пользуйся кислородом в каждом полете, если «ка-бинная высота» превышает 3000 м.

  3. Пользуйся кислородом при всех продолжительных полетах, если «кабинная высота» приближается к 3000 м.

  1. Отправляясь в продолжительный ночной полет, начинай пользоваться кислородом с земли, если «кабинная высота» превышает 1500 м.

  2. Не летай с похмелья. Высота плохо сказывается на организме в таком состоянии.

  3. Перед высотным полетом не принимай таких лекарств, как сульфонамидные препараты, аспирин, антигистаминные средства, производные каменноугольного дегтя, средства против воздушной болезни и, конечно, алкоголь.

  4. Принимай решение о пользовании кислородом на основании показания высотомера, а не своих чувств.

  5. Регулярно проверяй исправность кислородного прибора [51].


3. РАЗМЕЩЕНИЕ ГРУЗОВ НА САМОЛЕТЕ
При размещении груза необходимо учитывать два фактора: полетный вес самолета и положение его центра тяжести. Конструкция некоторых самолетов легкого типа обеспечивает сохранение центровки самолета в допустимых пределах при любом размещении груза допустимого веса, однако большинство самолетов имеет свою строго определенную схему размещения грузов.

Неправильное размещение грузов вызывает: 1) снижение летных качеств самолета при перегрузке и 2) ухудшение управляемости самолета при смещении центра тяжести. Увеличение полетного веса приводит к увеличению инертности и понижению скороподъемности самолета, а также к увеличению критической скорости, наивыгоднейшей скорости для набора высоты, длины разбега при взлете и длины пробега при посадке. Если пренебречь увеличением наивыгоднейшей скорости для набора высоты, то характеристики набора высоты еще более ухудшатся; если же при этом не учитывать изменения других факторов, то результаты могут быть катастрофическими.

Управляемость большинства современных самолетов при смещении центра тяжести за допустимые пределы в сильной степени изменяется. В случае крайней передней центровки величина потребной силы, которую необходимо приложить для увеличения или уменьшения воздушной скорости, резко возрастает. При этом эффективность рулей при уменьшении скорости («задирание носа») на посадке резко снижается. В случае передней центровки, выходящей за допустимый предел, при посадке приходится пользоваться мотором. По мере перемещения центра тяжести назад продольная управляемость самолета улучшается, а величина усилий, необходимых для управления самолетом, уменьшается. В случае же выхода центра тяжести за крайнюю границу при полете на малых скоростях может появиться обратное действие рулей. Кроме того, при смещении центра тяжести назад выше допустимого предела, увеличивается минимальная скорость, при которой можно управлять самолетом в случае отказа мотора. Это происходит вследствие уменьшения корректирующего момента из-за сокращения расстояния между рулем поворота и центром тяжести.

Хотя указанное выше изменение характеристик самолета при смещении центра тяжести за допустимые пределы, по существу, не зависит от веса, тем не менее с увеличением веса управление или восстановление управления самолетом при таких центровках становится чрезвычайно трудным вследствие ненормальной управляемости и увеличения инерции самолета.

В авиации проблема сохранения центровки наиболее остро стоит в отношении одновинтовых вертолетов вследствие весьма малых допустимых отклонений от нормы и полного нарушения управляемости при выходе центра тяжести за крайние пределы. Сказанное также относится и к летающим лодкам.
4. ВЛИЯНИЕ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ ВОЗДУХА НА МОЩНОСТЬ ПОРШНЕВЫХ ДВИГАТЕЛЕЙ
В последние годы широко обсуждался вопрос о влиянии температуры и влажности воздуха на мощность двигателя и летные данные самолета. При сравнительно большом полетном весе, который допускается для транспортных самолетов в настоящее время, режим взлета часто оставляет желать лучшего, поэтому недопустимо или допустимо только самое незначительное снижение мощности двигателя в целях сохранения запаса мощности на случай отказа одного из моторов. Установлено, что при повышении температуры и влажности воздуха мощность двигателя падает, и это должно соответствующим образом учи-» тываться при расчете полетов, требующих большой взлетной мощности двигателей.

Чтобы подвести базу под наши рассуждения, попытаемся объяснить причины изменения мощности в зависимости от температуры и влажности воздуха и показать способы приблизительной оценки величины этого изменения.

Изменение мощности двигателя связано главным образом с количеством кислорода, поступающего в двигатель. Мощность поршневого двигателя создается в результате сгорания топлива в цилиндрах двигателя. Этот процесс может протекать только за счет кислорода воздуха. Горючее, обычно в виде паров жидкости, может при необходимости подаваться в цилиндры в количествах значительно больших, чем требуется для нормального сгорания. В то же время максимальное количество воздуха, которое может быть подано в цилиндры, резко ограничено. При прочих равных условиях мощность двигателя в основном зависит от веса кислорода, содержащегося в воздухе, поступающем в цилиндры. Температура и влажность влияют на параметры воздуха, что сказывается на мощности двигателя.

Рассмотрим сначала влияние на мощность двигателя температуры воздуха. Снижение мощности в данном случае вызывается главным образом уменьшением плотности воздуха вследствие повышения его температуры. Известно, что с увеличением температуры плотность, или вес определенного объема газа, уменьшается пропорционально его абсолютной температуре. Когда температура воздуха на 10° F (^5° С) выше температуры по стандартной атмосфере на уровне моря, равной 59° F (15° С), плотность воздуха уменьшается примерно на 2%; соответственно уменьшается и вес кислорода, содержащегося в единице объема воздуха. В то'же время более теплый воздух гораздо легче проходит через карбюратор, всасывающие патрубки, клапаны и пр., в результате чего величина снижения мощности двигателя, вызванного уменьшением плотности воздуха при его нагревании, уменьшается вдвое.

Теоретические выводы, подтвержденные на испытательном стенде, показывают, что для данной высоты, данного числа оборотов и давления наддува повышение температуры входящего воздуха на 10° F влечет за собой снижение мощности приблизительно на 1%. Следовательно, у самолета DC-3 (С-47) с моторами PWR-1830-92, расчетная мощность которых равна 1200 л. с. каждого, при взлете с аэродрома, расположенного на уровне моря, при температуре воздуха 90°F (32° С) мощность двигателей снизится на 3% (36 л. с. на каждый двигатель).

При работе двигателя с наддувом при полностью открытом дросселе отмечается дополнительное влияние изменения температуры на мощность двигателя. С повышением температуры воздуха давление, которое могло бы быть создано в цилиндрах с помощью нагнетателя, уменьшается. Таким образом, максимальный наддув, который достигается при полностью открытом дросселе в жаркий день, будет ниже, чем наддув, получаемый при тех же условиях в обычный средний день. Общая же потеря мощности двигателя будет складываться из потери за счет уменьшения давления наддува и потери за счет изменения плотности воздуха.

Величина изменения мощности под влиянием повышения температуры воздуха при работе двигателя с полностью открытым дросселем зависит от характеристики нагнетателя, а также от атмосферного давления и давления наддува, поэтому она трудно поддается определению. Для двигателя PWR-1830-92, например, при работе на полном дросселе на высоте несколько более расчетной повышение температуры на 10° F вызывает уменьшение давления наддува приблизительно на 0,25 дюйма (6 мм) рт. ст. Поскольку изменение давления наддува для этого двигателя на 1 дюйм (25,4 мм) рт. ст. соответствует изменению его полезной мощности на 25 л. с, а 0,25 дюйма будет соответствовать примерно% л. с, то повышение температуры на 10°F при указанных выше условиях приведет к уменьшению полезной мощности двигателя примерно на 6 л. с. В процентном отношении эффективная мощность двигателя при работе с полностью открытым дросселем при повышении температуры на 10° F будет составлять 99% от (1200—6), или 1182 л. с; общая потеря мощности при этом будет равна 18 л. с, или 1,5%.

Прежде чем закончить рассмотрение вопроса о влиянии температуры воздуха на мощность двигателя, необходимо указать, что температура воздуха влияет также на температуру двигателя, которая в свою очередь оказывает влияние на мощность двигателя как и плотность воздуха. Однако количественное выражение этого влияния для каждого отдельного двигателя потребует более точных данных о температуре отдельных цилиндров, чем те данные, которые можно получить в эксплуатационных условиях. Но поскольку основные показатели мощности получены во время работы мотора при температурах, близких к предельным, то очевидно, что снижения мощности можно ожидать только при температурах, превышающих предельные значения.

Переходя к вопросу о влиянии влажности воздуха на мощность двигателя, необходимо прежде всего установить, что мы понимаем под влажностью. Обычная вода, содержащаяся в воздухе в виде дождевых капель или даже микроскопических частичек влаги,, образующих туман, не вызывает снижения мощности двигателя. Наоборот, вода в таком сконденсированном состоянии при определенных условиях может использоваться для борьбы с детонацией горючей смеси при больших давлениях наддува. Это так называемый «впрыск воды». Вода, которая нас интересует в связи с рассматриваемым вопросом, находится в воздухе в газообразном состоянии, т. е. в виде паров.

Количество водяных паров, которое может быть поглощено воздухом, изменяется в зависимости от температуры воздуха. При повышении температуры воздуха количество содержащихся в нем водяных паров может увеличиться; в любой момент времени содержание водяных паров в воздухе характеризуется следующими четырьмя величинами: удельной влажностью, относительной влажностью, точкой росы и упругостью пара. Удельная влажность указывает на количество граммов водяного пара, содержащееся в 1 кг влажного воздуха; измеряется она в г/кг.

Относительной влажностью называется отношение веса воды, содержащейся в единице объема воздуха, к весу того максимального количества воды, которое может содержаться в единице объема воздуха при данной температуре (выражается в%). Точкой росы называется температура, при которой воздух полностью насыщается содержащимися в нем водяными парами. Упругость водяного пара—это та часть атмосферного давления, которая создается за счет содержания в воздухе паров воды. Упругость пара измеряется в миллиметрах ртутного столба.

Значения удельной влажности и упругости пара используются обычно при инженерных расчетах, а относительная влажность и точка росы—главным образом для характеристики влажности воздуха,

Признавая значительность влияния влажности воздуха на мощность двигателя Комитет гражданской авиации постановил, что начиная с 1951 года в формулярах на все двигатели, предназначенные для установки на транспортных самолетах, необходимо указывать мощность на всех высотах с учетом поправки на относительную влажность, равную 80% при температурах, соответствующих данным стандартной атмосферы.

При повышении влажности воздуха происходит вытеснение сухого воздуха и кислорода негорючими парами воды, что приводит к снижению мощности двигателя. Кроме того, снижение мощности происходит в результате обогащения горючей смеси (горючее—сухой воздух) или, точнее, в результате увеличения соотношения «горючее— кислород» в смеси, а также в результате влияния паров воды на интенсивность горения смеси. Влияние обогащения смеси на мощность зависит от характеристик данного типа двигателя, и поэтому его точное количественное определение не является простым делом.

Суммарное влияние явлений вытеснения кислорода и снижения интенсивности горения смеси при повышении влажности воздуха на мощность двигателя можно приблизительно оценить, введя поправочный коэффициент влажности (в%), который получается из квадрата температуры точки росы (в градусах Фаренгейта), деленного на 1000. Эта практическая формула применима для температур точки росы не свыше 80° F (~~27° С). Для более высоких температур при вычислении коэффициента влажности следует вводить поправку, равную 3% на каждые 10° F сверх 80° F (~27°С).. Например, для температуры точки росы 40° F (~4,5° С) приблизительный коэффициент влажности будет равен 402: 1000=1,6%. Для температуры точки росы, равной 90° F, коэффициент влажности вычис-" ляется следующим образом:


Как указано выше, эта формула не учитывает влияния обогащения смеси на мощность двигателя, поскольку это обогащение можно зачастую отнести за счет намеренного обогащения горючей смеси при работе двигателя на больших мощностях с целью его охлаждения. Горючая смесь, подаваемая в двигатель при взлете, богаче наивыгоднейшей смеси, при которой двигатель дает наибольшую мощность; падение мощности происходит в результате дальнейшего обогащения смеси, вызываемого вытеснением сухого воздуха парами воды.

Поскольку этот эффект зависит от характеристик двигателя, характеристик карбюратора и величины относительной влажности, трудно вывести общую формулу для его количественной оценки. Можно только сказать, что снижение мощности двигателя, получаемое за счет обогащения смеси, имеет второстепенное значение по сравнению с тем снижением, которое происходит вследствие влияния первых двух факторов. Кроме того, влиянием обогащения смеси можно пренебречь в двигателях, работающих с «впрыском воды», в которых горючая смесь доводится до оптимального состава с целью получения максимальной мощности.

Вообще говотэя, поправка на влажность для данной точки росы с высотой увеличивается очень незначительно: при увеличении высоты на 1200 м она равна приблизительно 1%. Такая величина изменения мощности двигателя не играет существенной роли, и ею можно пренебречь. Чтобы подытожить все сказанное, подсчитаем эффективную мощность двигателя PWR-1830 во время взлета с полностью открытым дросселем с аэродрома, расположенного на высоте 1200 м над уровнем моря, при температуре воздуха 85° F (^30° С), превышающей стандартную на 40° F, и при точке росы 70°F (~21° С) (соответствующей относительной влажности 80%).
А. Влияние температур

  1. Эффект плотности: 1% на 10°F=4,0%, или 48 л. с.

  2. Эффект полностью открытого дросселя:

0,25 дюйма рт. ст. на каждые 10°F=1,0 дюйма рт. ст., или 35 л. с. Б. Влажность.

  1. Эффект вытеснения кислорода и снижения интенсивности горения: 702: 1000=4,9%, или 59 л. с.

  2. Эффект обогащения смеси (принимаем 50% мощности от полученной в пункте 3) ^-30 л. с.

Общее снижение мощности двигателя=162 л. с.

Эффективная мощность двигателя, вычисленная для данных условий, составляет: 1200—162=1038 л. с.

В рассмотренном случае в результате влияния температуры и влажности воздуха произошло снижение мощности двигателя на 162 л. с. Однако при взлете самолета в этих условиях потребная мощность будет больше обычной на величину, превосходящую 162 л. с. Увеличение же потребной мощности приведет к уменьшению избыточной мощности, которая определяет взлетные качества самолета. Из всего сказанного можно сделать вывод, что в жаркий и влажный день самолет на взлете будет «вялым» [20].
  1   2   3   4   5

Похожие:

Роль авиационных руководителей в обеспечении безопасности полетов icon Руководство по предотвращению авиационных происшествий икао статья...
Ведущий рубрики Валерий Шелковников, Член правления Всемирного фонда безопасности полетов (fsf) и Партнерства "Безопасность полетов"....
Роль авиационных руководителей в обеспечении безопасности полетов icon Программа первоначальной
Подготовка в области человеческого фактора, предотвращения авиационных происшествий и обеспечения безопасности полетов
Роль авиационных руководителей в обеспечении безопасности полетов icon Член Всемирного фонда безопасности полетов, заместитель директора...
Ведущий рубрики Валерий Шелковников, Член правления Всемирного фонда безопасности полетов (fsf) и Партнерства "Безопасность полетов"....
Роль авиационных руководителей в обеспечении безопасности полетов icon Программы подготовки пилотов сверхлегких воздушных судов учебный...
Подготовка в области человеческого фактора, предотвращения авиационных происшествий и обеспечения безопасности полетов
Роль авиационных руководителей в обеспечении безопасности полетов icon Рекомендации по противообледенительной обработке воздушных судов
Исходя из анализа авиационных событий и в целях реализации мер, направленных на повышение безопасности и эффективности полетов, а...
Роль авиационных руководителей в обеспечении безопасности полетов icon Рекомендации по противообледенительной обработке воздушных судов
Исходя из анализа авиационных событий и в целях реализации мер, направленных на повышение безопасности и эффективности полетов, а...
Роль авиационных руководителей в обеспечении безопасности полетов icon Утвержден приказом Дальневосточного мту вт росавиации от 18. 02....
Федерального агентства воздушного транспорта (далее – Управление), было зарегистрировано 9 эксплуатантов воздушного транспорта. В...
Роль авиационных руководителей в обеспечении безопасности полетов icon Росавиация дальневосточное межрегиональное территориальное управление...
Состояния безопасности полетов в авиационных предприятиях, подконтрольных дальневосточному межрегиональному территориальному управлению...
Роль авиационных руководителей в обеспечении безопасности полетов icon Приказ Минобороны РФ от 27 апреля 2009 г. №265 “Об утверждении Федеральных...
Приказ Минобороны РФ от 27 апреля 2009 г. №265 “Об утверждении Федеральных авиационных правил медицинского обеспечения полетов государственной...
Роль авиационных руководителей в обеспечении безопасности полетов icon Проект принятых решений по итогам заседания Совета управления от 28. 04. 2017
В соответствии с действующими нормативными правовыми документами, рекомендациями Росавиации и Тюменского мту росавиации обеспечить...
Роль авиационных руководителей в обеспечении безопасности полетов icon Биография Журнал AeroSafetyWorld, декабрь 2007 г
Ведущий рубрики Валерий Шелковников, Член правления Всемирного фонда безопасности полетов (fsf) и Партнерства «Безопасность полетов»....
Роль авиационных руководителей в обеспечении безопасности полетов icon Статьи из журнала AeroSafetyWorld (май, 2008) нацелившись на верхи
Ведущий рубрики Валерий Шелковников, Член правления Всемирного фонда безопасности полетов (fsf) и Партнерства "Безопасность полетов"....
Роль авиационных руководителей в обеспечении безопасности полетов icon Приказ Министерства транспорта РФ от 08. 01. 1997 г. N 2 [Об утверждении...
Об утверждении «Положения об обеспечении безопасности перевозок пассажиров автобусами»]
Роль авиационных руководителей в обеспечении безопасности полетов icon Федеральные авиационные правила "Сертификационные требования к юридическим...
Об утверждении и введении в действие Федеральных авиационных правил "Сертификационные требования к юридическим лицам, осуществляющим...
Роль авиационных руководителей в обеспечении безопасности полетов icon Документы регламентирующие летную работу основные правила полетов...
Союза сср, Положением об использовании воздушного пространства рф, Инструкцией по применению Положения об использовании воздушного...
Роль авиационных руководителей в обеспечении безопасности полетов icon Приказ мга СССР от 26. 12. 1988 n 209 Об утверждении Руководства...
А по обеспечению безопасности полетов разработано Руководство по орнитологическому обеспечению полетов в гражданской авиации (рооп...

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск