Министерство образования и науки Республики Бурятия
Комитет по образованию Администрации г. Улан-Удэ
МБОУ Российская гимназия № 59
-
-
-
Рассмотрено на заседании НМС
Протокол № ___
от «___» __________ 2016 г.
Руководитель НМС
_______________________
|
«Утверждаю»
Директор МБОУ Российская гимназия № 59
___________ / Миронов Е.М.
ФИО
«__»______________2016г.
|
Рабочая программа
по алгебре и началам анализа (профильный уровень)
Количество часов: 175 часов (5 часов в неделю)
Класс: 10 Б класс
Учитель: Мурзина Н.Ю.
2016-2017 учебный год
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Нормативные правовые документы, на основании которых разработана рабочая программа:
Федеральный компонент государственного образовательного стандарта, утвержденный Приказом Минобразования РФ № 1089 от 05.03.2004;
Примерные программы, созданные на основе федерального компонента государственного образовательного стандарта, рекомендованные Министерством образования и науки РФ приказ № 03-1263 от 07.07.2005;
Базисный учебный план общеобразовательных учреждений Российской Федерации, утвержденный приказом Минобразования РФ № 1312 от 09.03.2004;
Образовательная программа МБОУ Российская гимназия № 59;
Учебный план МБОУ Российская гимназия № 59 на 2016-2017 учебный год.
Сборника нормативных документов. Математика / Программа подготовлена институтом стратегических исследований в образовании РАО. Научные руководители — член-корреспондент РАОА. М. Кондаков, академик РАО Л. П. Кезина, Составитель — Е. С. Савинов./ М.: «Просвещение», 2012;
Программы Алгебра и начала анализа 10-11 классы /А.Г. Мордкович/, 2007.
Рабочая программа по алгебре в 10 классе рассчитана на 175 часов, из расчета 5 часов в неделю.
В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:
• систематизация сведений о числах; формирование представлений о расширении числовых множеств от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;
• развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;
• систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие
• развитие представлений о вероятностно-статистических закономерностях в окружающем мире;
• совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;
• формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.
Цели
Изучение математики в старшей школе на профильном уровне направлено на достижение следующих целей:
формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;
развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;
воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.
Общеучебные умения, навыки и способы деятельности
В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:
проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;
решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;
планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;
построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;
самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.
Тематическое планирование составлено к УМК А.Г. Мордковича и др. «Алгебра и начала анализа», 10 класс, М. «Мнемозина», 2011 год на основе федерального компонента государственного стандарта общего образования с учетом авторского тематического планирования учебного материала, приведенного в учебнике.
На основании требований Государственного образовательного стандарта 2004 года в содержании календарно-тематического планирования предполагается реализовать актуальные в настоящее время компетентностный, деятельностный подходы, которые определяют задачи обучения:
Приобретение математических знаний;
Овладения обобщёнными способами мыслительной, творческой деятельности;
Освоение компетенций: учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной и профессионально-трудового выбора.
Форма итоговой аттестации обучающихся – экзаменационная работа.
Виды контроля.
Предполагаются промежуточный контроль в форме самостоятельных работ, тестов, понятийных диктантов, контрольных работ, зачетов, а также итоговый контроль в форме контрольной работы в конце учебного года.
Способы организации деятельности учащихся.
Предусмотрено проведение фронтального опроса, самостоятельных работ, выполнение домашних заданий, творческих работ, работ в парах, группах, элементы лекционно-семинарской системы (подготовительный урок, лекция, собеседование, практикум, консультация, контрольная работа, анализ к.р.).
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ
В результате изучения математики на профильном уровне ученик должен
знать / понимать:
– значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
– идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
– значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
– универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
– различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
– вероятностный характер различных процессов и закономерностей окружающего мира.
Числовые и буквенные выражения
уметь:
– выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; пользоваться оценкой и прикидкой при практических расчетах;
– применять понятия, связанные с делимостью целых чисел при решении математических задач;
– выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;
– проводить преобразование числовых и буквенных выражений.
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
– практических расчетов по формулам, используя при необходимости справочные материалы и простейшие вычислительные устройства.
Функции и графики
уметь:
– определять значение функции по значению аргумента при различных способах задания функции;
– строить графики изученных функций, выполнять преобразование графиков;
– описывать по графику и по формуле поведение и свойства функций;
– решать уравнения, системы уравнений, неравенства; используя свойства функций и их графические представления;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
– описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.
Начала математического анализа
уметь:
– находить сумму бесконечно убывающей геометрической прогрессии;
– вычислять производные элементарных функций, применяя правила вычисления производных, используя справочные материалы;
– исследовать функции и строить их графики с помощью производной;
– решать задачи с применением уравнения касательной к графику функции;
– решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
– решения прикладных задач, в том числе на наибольшие и наименьшие значения с применением аппарата математического анализа.
Уравнения и неравенства
уметь:
– решать тригонометрические уравнения;
– доказывать несложные неравенства;
– находить приближенные решения уравнений и их систем, используя графический метод;
– решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
– построения и исследования простейших математических моделей.
Элементы комбинаторики, статистики и теории вероятностей
уметь:
– решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
– анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.
Система оценки планируемых результатов
Для оценки планируемых результатов данной программой предусмотрено использование:
вопросов и заданий для самостоятельной подготовки;
заданий для подготовки к итоговой аттестации;
тестовых задания для самоконтроля;
Виды контроля и результатов обучения
Текущий контроль
Тематический контроль
Итоговый контроль
Методы и формы организации контроля
Устный опрос.
Монологическая форма устного ответа.
Письменный опрос:
Математический диктант;
Самостоятельная работа;
Контрольная работа.
Особенности контроля и оценки по математике.
Текущий контроль осуществляется как в письменной, так и в устной форме при выполнении заданий в тетради.
Письменные работы можно проводить в виде тестовых или самостоятельных работ на бумаге Время работы в зависимости от сложности работы 5-10 или 15-20 минут урока. При этом возможно введение оценки «за общее впечатление от письменной работы» (аккуратность, эстетика, чистота, и т.д. ). Эта отметка дополнительная и в журнал выносится по желанию ребенка.
Итоговый контроль проводится в форме контрольных работ практического типа. В этих работах с начала отдельно оценивается выполнение каждого задания, а затем вводится итоговая отметка. При этом итоговая отметка является не средним баллом, а определяется с учетом тех видов заданий, которые для данной работы являются основными.
Оценка ответов учащихся
Оценка – это определение степени усвоения учащимися знаний, умений, навыков в соответствии с требованиями государственного образовательного стандарта.
1. Устный ответ оценивается отметкой «5», если учащийся:
– полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
– изложил материал грамотным языком в определенной логической последовательности, точно используя специальную терминологию и символику;
– правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
– показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
– продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;
– отвечал самостоятельно без наводящих вопросов учителя;
– возможны одна-две неточности при освещении второстепенных вопросов или в рисунках, чертежах и т.д., которые ученик легко исправил по замечанию учителя.
2. Ответ оценивается отметкой «4», если он удовлетворяет в основном требованиям на отметку «5», но при этом имеет один из недостатков:
– в изложении допущены небольшие пробелы, не исказившие содержание ответа;
– допущены один-два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
– допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в рисунках, чертежах и т.д., легко исправленных по замечанию учителя.
3. Отметка «3» ставится в следующих случаях:
– неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала;
– имелись затруднения или допущены ошибки в определении понятий, использовании специальной терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
– учащийся не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
– при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
4. Отметка «2» ставится в следующих случаях:
– не раскрыто основное содержание учебного материала;
– обнаружено незнание или непонимание учащимся большей или наибольшей части учебного материала;
– допущены ошибки в определении понятий, при использовании специальной терминологии, в рисунках, чертежах или в графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
5. Отметка «1» ставится в случае, если:
– учащийся отказался от ответа без объяснения причин.
Оценка контрольных и самостоятельных письменных работ.
Оценка "5" ставится, если ученик:
выполнил работу без ошибок и недочетов в требуемом на «отлично» объеме;
допустил не более одного недочета в требуемом на «отлично» объеме;
Оценка "4" ставится, если ученик выполнил работу полностью, но допустил в ней:
не более одной негрубой ошибки и одного недочета в требуемом на «отлично» объеме;
или не более трех недочетов в требуемом на «отлично» объеме.
Оценка "3" ставится, если ученик правильно выполнил не менее половины работы или допустил:
не более двух грубых ошибок в требуемом на «отлично» объеме;
или не более одной грубой и одной негрубой ошибки и одного недочета;
или не более двух-трех негрубых ошибок;
или одной негрубой ошибки и трех недочетов;
или при отсутствии ошибок, но при наличии четырех-пяти недочетов.
Оценка "2" ставится, если ученик:
допустил число ошибок и недочетов превосходящее норму, при которой может быть выставлена оценка "3";
или если правильно выполнил менее половины работы.
Критерии выставления оценок за проверочные тесты.
1. Критерии выставления оценок за тест
Время выполнения работы: на усмотрение учителя.
Оценка «5» - 100 – 90% правильных ответов, «4» - 70-90%, «3» - 50-70%, «2» - менее 50% правильных ответов.
УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН
№
|
Тема
|
Количество часов
|
Контрольная работа
|
1
|
Вводное повторение.
|
4
|
Входная диагностика
|
2
|
Числовые функции.
|
10
|
Контрольная работа № 1
|
3
|
Тригонометрические функции
|
36
|
Контрольная работа № 2
Контрольная работа № 3
|
4
|
Тригонометрические уравнения
|
14
|
Контрольная работа № 4
|
5
|
Преобразования тригонометрических выражений
|
32
|
Контрольная работа № 5
Контрольная работа № 6
|
6
|
Производная
|
38
|
Контрольная работа № 7
Контрольная работа № 8
|
7
|
Комбинаторика и вероятность
|
8
|
Контрольная работа № 9
|
8
|
Итоговое повторение
Экзамен за курс 10 класса
|
29
4
|
Экзаменационная работа
|
Итого
|
|
175
|
|
|