Скачать 2.37 Mb.
|
Тема 3.1. Трансформаторные подстанции: конструкции и характеристики основного современного оборудования, его монтаж и наладка Трансформаторы Передачу электроэнергии на большие расстояния в основном осуществляют на повышенном (110–750 кВ) напряжении. Распределение электроэнергии выполняют сетями 6–35(110) кВ. Электропотребителей подключают к сетям более низких напряжений (0,22–10 кВ). Для соответствующих преобразований (трансформаций) напряжений, а также связи электрических сетей различных классов напряжений и распределения электроэнергии используют силовые трансформаторы и автотрансформаторы однофазного и трёхфазного исполнения. На подстанциях электрических сетей и электростанциях преимущественно применяют трёх-фазные двух- и трёхобмоточные трансформаторы и автотрансформаторы. При большой мощности используют однофазные трансформаторы, соединённые в трёхфазные группы. Условные обозначения понижающих и повышающих трансформаторов и автотрансформаторов в схемах электрических систем электроснабжения показаны на рис. 1. а б в г д е ж Рис. 1. Условные обозначения трансформаторов и автотрансформаторов на схемах: а, б – двухобмо-точные нерегулируемые; в – регулируемый; г – трёхобмоточный регулируемый; д – автотрансформатор; е и ж – регулируемый и нерегулируемый двухобмоточные трансформаторы с расщеплённой обмоткой низ-шего напряжения Стрелки обозначают электрическую нагрузку S1 и S2 на шинах (выводах) высшего U1 и низшего напряжения U2 двухобмоточных трансформаторов (рис.1, а–в). В случае трёхобмоточных трансформаторов и автотрансформаторов стрелки обозначают электрические нагрузки S1, S2 и S3 на шинах высшего U1, среднего U2 и низшего U3 напряжений (рис. 1, г, д). Другая стрелка символизирует наличие регулирования напряжения под нагрузкой (РПН). Отсутствие таковой означает, что трансформатор снабжён устройством изменения (улучшения) напряжения ПБВ (переключатель без возбуждения). Изменение напряжения осуществляется при отключении трансформатора от сети. Принципиальные схемы двух- и трёхобмоточных трансформаторов представлены на рис..2 и рис. 3. Обмотки высшего напряжения (ВН) 6–35 кВ двухобмоточных трансформаторов соединены в звезду (с изолированной или выведенной нулевой точкой), а обмотки низшего напряжения (НН) 0,4/0,23 кВ и 0,69/0,4 кВ соединены в звезду с выведенной нулевой точкой, т. е. группу соединений Y/Y0–0 (рис. 2, а). При более высоком напряжении обмоток (ВН 110, 150, 220 кВ) обмотку НН (6–10 кВ) соединяют в треугольник, что соответствует группе соединений Yн / Δ −11 (рис. 2, б). а б в г Рис. 2 Схемы соединений обмоток трансформаторов: а – звезда – звезда; б, г – векторные диаграммы напряжений; в – звезда – треугольник а б Рис. 3. Схемы соединений обмоток: а – трёхобмоточного трансформатора звезда с нулём – звезда – треугольник; б – векторная диаграмма напряжений соединены соответственно в звезду с выведенной и изолированной нулевой точкой. Обмотку НН при напряжении 6, 10, 20 кВ соединяют в треугольник, что соответствует группе соединений Yн /Y/ Δ − 0 / 0 /11 (рис. 3). В автотрансформаторах (ВН 150, 220, 330, 500, 750 кВ) общие обмотки соединены в звезду с обязательным глухим заземлением нейтрали. Силовые трансформаторы и автотрансформаторы характеризуются следующими каталожными (паспортными) данными: Sном – номинальная мощность трансформатора, кВА; Uном – но-минальные междуфазовые (линейные) напряжения присоединяемых сетей; ΔPк – потери актив-ной мощности короткого замыкания, кВт; ΔPх – потери активной мощности холостого хода, кВт; Uк – относительное значение напряжения короткого замыкания, %; Iх – относительное значение тока холостого хода, %. На основе указанных каталожных данных определяют все расчётные параметры схем замещения трансформирующих устройств: сопротивления, проводимости, коэффициенты трансформа-ции. Указанные параметры влияют на потери мощности и электроэнергии, на отклонения напряжения у электропотребителей и потому должны учитываться при расчётах и анализе режимов работы электрических сетей. Тип трансформатора имеет условное обозначение, по которому можно определить количество фаз, систему охлаждения, число обмоток, наличие регулировочного устройства, грозоупорность изоляции трансформатора, номинальную мощность и класс напряжения обмотки ВН. Буквенные обозначения трансформаторов: ТМ, ТС, ТСЗ, ТД, ТДЦ, ТМН, ТДН, ТЦ, ТДГ, ТДЦГ, ОЦ, ОДГ, ОДЦГ, АТДЦТНГ, АОТДЦН и т. д. Первая буква обозначает число фаз (Т – трёхфазный, О – однофазный); далее следует обозначение системы охлаждения: М – естественное масляное, т. е. естественная циркуляция масла; С – сухой трансформатор с естественным воздушным охлаждением открытого исполнения; Д – масляное с дутьём, т. е. с обдуванием бака при помощи вентилятора; Ц – принудительная циркуляция масла через водяной охладитель; ДЦ – принудительная циркуляция масла с дутьём. Буква Р после числа фаз в обозначении указывает, что обмотка низшего напряжения представлена двумя (тремя) обмотками (расщеплена). Наличие второй буквы Т означает, что трансформатор трёхобмоточный, двухобмоточный специального обозначения не имеет. Следующие буквы указывают: Н – регулирование напряжения под нагрузкой (РПН), отсутствие наличие переключения без возбуждения (ПБВ); Г – грозоупорный. А – автотрансформатор (в начале условного обозначения). За буквенными обозначениями идут номинальная мощность трансформатора (кВА) и через дробь – класс номинального напряжения обмотки ВН (кВ). В автотрансформаторах добавляют в виде дроби класс напряжения обмотки СН. Иногда указывают год начала выпуска трансформаторов данной конструкции. Нормативный срок службы отечественных трансформаторов составляет 50 лет, поэтому в сетях энергосистем промышленных и сельскохозяйственных предприятий могут также эксплуатироваться трансформаторы, выпущенные до 1967 г. и обновлённые вследствие капитального ремонта. Шкала номинальных мощностей этих трансформаторов: 5, 10, 20, 30, 50, 100, 180, 320, 560, 750, 1000, 1800, 3200, 5600,…, 31500, 40500, кВА и т. д. Рис. 4. Схемы и группы соединения обмоток двухобмоточных трансформаторов Важным параметром подключения трансформатора к сети является группа и схема соединений его обмоток. Группой соединений называют угловое (кратное 30°) смещение векторов меж-ду одноименными вторичными и первичными линейными напряжениями холостого хода транс-форматора. Возможны четыре схемы соединения силовых трансформаторов: звезда Y, звезда с выведенной нейтралью YH, треугольник А, зигзаг Z. Группа соединений указывается числами от 0 до 12. Например, 11 соответствует углу 330°. На электрических станциях и подстанциях наибольшее распространение получили следующие схемы и группы соединений двухобмоточных трансформаторов: - звезда - звезда с выведенной нейтралью Y/YH - 12; - звезда - треугольник Y/Δ - 11; - звезда с выведенной нейтралью - треугольник YH/Δ - 11. В трехобмоточных трансформаторах наиболее часто применяются соединения: звезда - звезда с выведенными нейтралями - треугольник Y/YH/Δ - 11, 12. Возможность регулирования и изменения напряжения определяется параметрами РПН и ПБВ. Их характеристики задаются в виде максимального числа положительных и отрицательных по отношению к основному выводу обмотки ВН или СН регулировочных ответвлений с указанием шага коэффициента трансформации ΔkT в виде ±n× ΔkТ. Например, для РПН: ±6х1,5%, ±8х1,5%, ±10х1.5%, ±9х1,785, ±12х1%; для ПБВ: ±2х2,5%. Номинальный коэффициент трансформации – отношение номинальных напряжений обмоток трансформатора: kт ном=U1ном\U2ном Изменение коэффициента трансформации достигается изменением числа отпаек (витков) на од-ной из обмоток. Конструкция трансформатора Рис. 5. Активная часть масляного трансформатора: 1-ярмо; 2- обмотка ВН; 3 – обмотка НН; - 4- магнитопровод Рис.6. трехфазный трансформатор мощностью 1000 В•А с масляным охлаждением: 1 – бак; 2, 5 – соответственно нижняя и верхняя ярмовые балки магнитопровода; 3 – обмотка ВН4 4 – регулировочный отвод к переключателю; 6 – магнитопровод; 7 - деревянная планка; 8 – отвод от обмотки ВН; 9 – переключатель; 10 – подъемная шпилька; 11 – крышка бака; 12 – подъемное кольцо; 13, 14 - соответственно выводы ВН и НН; 15 – выхлопная труба4 16 – расширитель (консерватор); 17 – маслоуказатель; 18 – газовое Рис.7. Двухслойная цилиндрическая обмотка: 1 – провод; 2 – изолирующая прокладка (электрокартон); 3 – уравнительное кольцо; 4 – внутренний слой; 5 – рейка; а,х – выводы обмоток ВН Рис. 8. Непрерывная обмотка: 1 – регулировочное ответвление; 2 – катушка; 3 --- дистанционная прокладка из электрокартона; 4 – опорное изоляционное кольцо; 5 – бумажно-бакелитовый цилиндр. Рис.8. Переключатель типа ТПСУ: 1 – контактный болт; 2 – контактный сегмент; 3 – контактный вал; 4 – изоляционная часть вала (бакелитовая трубка); 5 – фланец цилиндра; 6 – бумажно-бакелитовый цилиндр; 7 – резиновое уплотняющее кольцо; 8 – крышка бака трансформатора; 9 – фланец; 10 – стопорный болт; 11 – колпак привода (рукоятка) Рис.9. Расширитель: 1 –бак; 2 – маслоуказатель; 3 – маслоуказательное стекло; 4 – угольник; 5 – запирающий болт; 6 - крышка трансформатора; 7 – газовое реле; 8 – плоский кран; 9 - трубопровод; 10 – опорная пластина Схема присоединения силового трансформатора небольшой мощности с первичным напряжением 6 кВ и вторичным 0,4\0,23 кВ показана на рис. 10.а. Для отключения этого трансформатора от сети служит шинный разъединитель (отключение должно производиться только при холостом ходе трансформатора); защита от высокого и низкого напряжений выполняется плавкими предохранителями. На рис. 10.б показано присоединение более мощного силового трансформатора. В эту схему входят выключатель, предназначенный для оперативных переключений. и релейная защита (РЗ), приборы которой получают питание от измерительных трансформаторов тока. а б Рис. 10. Схема присоединения силового трансформатора мощностью: а - до 400 кВ•А; б –выше 400 кВ•А Схемы трансформаторных подстанций напряжением 6…10/0,4…0,66 кВ Присоединение цеховых трансформаторных подстанций к линиям напряжением 6…10 кВ. На цеховых трансформаторных подстанциях напряжением 6…10/0,4 кВ применяются схемы без сборных шин (рис 11). При радиальном питании по схеме блока линия-трансформатор обычно применяется сухое присоединение трансформаторов на стороне высшего напряжения (см. рис 11, а). При питании по магистрали на вводе к трансформатору в большинстве случаев устанавливаются выключатели нагрузки или разъединители (см.рис. 11, б). Если же необходимо обеспечить селективное отключение трансформатора при его повреждении или недопустимой перегрузке, то последовательно с выключателем нагрузки или разъединителем устанавливается предохранитель. При магистральном питании ТП на вводе к трансформатору с номинальной мощностью. устанавливаются аппараты в следующем порядке по направлению тока: - предохранитель и выключатель нагрузки (при 630 . ³ ном т S кВ•А); - разъединитель и предохранитель (при 400 . £ ном т S кВ•А). Рис. 11. Схемы цеховой подстанции без сборных шин напряжением 6... 10 кВ: а - при радиальном питании; б - при магистральном питании Схема распределительной подстанции (распределительного пункта, силового пункта, распределительного щита, шкафа и т. д.) определяется ее назначением, числом и мощностью отходящих линий, уровнем токов короткого замыкания. Для ввода питания в жилые и общественные здания применяют вводные распределительные устройства (ВРУ). Схема панели ВРУ в однолинейном изображении дана на рис. 12. При выполнении РП на напряжении до 1 кВ используют стандартные панели, на которых устанавливаются комплекты из рубильников с предохранителями или рубильников с автоматами, иногда с контакторами. Схема панели распределительного щита с рубильниками и предохранителями РПс-2 и трансформаторами тока ТК-20 дана в трехфазном изображении на рис.13. При составлении схемы распределительной подстанции необходимо так подбирать нагрузки и отходящие линии, чтобы РП не получилась громоздкой и дорогостоящей, но в то же время была устойчива к токам короткого замыкания. Если есть необходимость в отходящих линиях небольших сечений, следует группировать нагрузки по мелким магистралям. В случае применения рубильников с предохранителями пропускную способность отходящих линий для силовой нагрузки рекомендуется принимать силой тока 250 и 400 А. Сечения проводов и кабелей выше 150 мм2 применять не рекомендуется. Рис. 12. Схема панели вводного распределительного устройства на напряжении 0,4 кВ Рис. 13. Схема панели распределительного щита на четыре линии с рубильниками и предохранителями на напряжении 0,4 кВ В схемах распределительных подстанций для силовых и осветительных сетей должно быть обеспечено отключение всей РП без нарушения работы остальных РП, питающихся от одной магистрали. Для силовых РП это достигается применением общих рубильников на вводе, причем при питании группы РП «цепочкой» каждая РП может быть отключена без нарушения работы самой цепочки. Для потребителей, требующих более надежного электроснабжения, применяются РП с двумя рубильниками или контакторами на вводе для подключения к независимым источникам питания. Ответвления от РП защищаются предохранителями или автоматами. Принципы компоновки и размещения трансформаторных и распределительных подстанций Компоновка и конструктивное выполнение трансформаторных и распределительных подстанций производятся на основании главной схемы электрических соединений. Компоновка подстанции должна быть увязана с генеральным планом объекта электроснабжения, необходимо учитывать действующие строительные нормы, стандарты и размеры типовых элементов зданий. Расположение подстанций должно учитывать и предусматривать удобный подвод автомобильной дороги , удобные подходы и выходы воздушных линий электропередач и кабельных сооружений в требуемых направлениях. Компоновка электрооборудования, конструктивное выполнение, монтаж токоведущих частей, выбор несущих конструкций, изоляционные и другие минимальные расстояния выбираются таким образом, чтобы обеспечить: - безопасное обслуживание оборудования в нормальном режиме работы установки; - удобное наблюдение за указателями положения выключателей и разъединителей, уровнем мас-ла в трансформаторах и аппаратах; необходимую степень локализации повреждений при нару-шении нормальных условий работы установки, обусловленных действиями дугового короткого замыкания; - безопасный осмотр, смену и ремонт аппаратов и конструкций любой цепи при снятом с нее напряжении без нарушения нормальной работы соседних цепей, находящихся под напряжением; - необходимую механическую стойкость опорных конструкций электрооборудования; - возможность удобного транспортирования оборудования; - максимальную экономию площади подстанции. Территория подстанции должна иметь внешнее ограждение, однако ограждение может не предусматриваться для закрытых подстанций. При проектировании электроустановок, содержащих маслонаполненное оборудование с количеством масла более 60 кг, должны обеспечиваться требования пожарной безопасности в соответствии с нормативными документами. Каждая трансформаторная подстанция имеет три основных блока: распределительные устройства высшего напряжения, трансформатор, распределительные устройства низшего напряжения. Распределительные устройства содержат коммутационные аппараты, устройства защиты и автоматики, измерительные приборы, сборные и соединительные шины, вспомогательные устройства. По конструктивному исполнению РУ трансформаторных и распределительных подстанций могут быть внутренними - закрытыми (ЗРУ) - с размещением электрооборудования в зданиях и наружными - открытыми (ОРУ) - с установкой электрооборудования на открытом воздухе. Под-станции могут быть комплектными или сборными. Комплектные подстанции изготовляются на заводах и транспортируются к месту установки узлами и блоками без демонтажа оборудования. На месте монтажа производят установку узлов и блоков и присоединения между ними и к сетям электроснабжения. Комплектное распределительное устройство - распределительное устройство, состоящее из шкафов, закрытых полностью или частично, или блоков с встроенными в них аппаратами, устройствами защиты и автоматики, измерительными приборами и вспомогательными устройствами, поставляемое в собранном или полностью подготовленном для сборки виде и предназначенное для внутренней установки. Комплектное распределительное устройство наружной установки (КРУН) - это КРУ, предназначенное для наружной (открытой) установки. Комплектная трансформаторная подстанция (КТП - для внутренней и КТПН - для наружной установки) - подстанция, состоящая из трансформаторов и блоков КРУ или КРУН, поставляемых в собранном или полностью подготовленном для сборки виде. На сборных подстанциях отдельные элементы изготавливаются на заводах и в электромонтажных организациях, доставляются к месту монтажа для сборки. Камера (ячейка) - помещение, предназначенное для установки аппаратов и шин. Закрытая ка-мера закрыта со всех сторон и имеет сплошные, (несетчатые) двери. Огражденная камера имеет проемы, защищенные полностью или частично несплошными (сетчатыми или смешанными) ограждениями. Размещение подстанций По месту нахождения на территории объекта различают следующие подстанции: отдельно стоящие на расстоянии от зданий; пристроенные, непосредственно примыкающие к основному зданию снаружи; встроенные, находящиеся в отдельных помещениях внутри здания, но с выкат-кой трансформаторов наружу; внутрицеховые, расположенные внутри производственных зданий с размещением электрооборудования непосредственно в производственном или отдельном за-крытом помещении с выкаткой электрооборудования в цехи. а) открытое; б) отдельно стоящая; в) внутрицеховая; г) встроенная; д) пристроенная В городских сетях напряжением 6... 10 кВ применяют закрытые подстанции, оборудованные одним или двумя трансформаторами мощностью 100...630 кВ•А каждый с первичным напряжением 6... 10 кВ и вторичным напряжением 0,4/0,23 кВ с воздушными или кабельными вводами. В небольших поселках и в сельской местности часто подстанции с одним трансформатором мощностью до 400 кВ•А устанавливают открыто на деревянных или бетонных конструкциях. В городах с небольшой плотностью застройки широко применяют отдельно стоящие подстанции. В городах с большой плотностью застройки применяют двухтрансформаторные подстанции. В промышленных сетях напряжением 6... 10 кВ в целях наибольшего приближения к электроприемникам рекомендуется применять внутренние, встроенные в здания или пристроенные к ним подстанции. Встроенные и пристроенные подстанции обычно располагаются вдоль одной из длинных сторон цеха, желательно ближайшей к источнику питания, или же при небольшой ширине цеха в шахматном порядке вдоль двух его сторон. Минимальное расстояние между соседними камерами разных внутрицеховых подстанций, а также между КТП допускается 10 м. Внутрицеховые подстанции могут размещаться только в зданиях с первой и второй степенями огнестойкости и с производствами, отнесенными к категориям Г и Д согласно противопожарным нормам. Число масляных трансформаторов на внутрицеховых подстанциях не должно быть более трех. Эти ограничения не распространяются на трансформаторы сухие или заполненные негорючей жидкостью. Отдельно стоящие ТП применяются, например, при питании от одной подстанции нескольких цехов, при невозможности размещения подстанций внутри цехов или у наружных их стен по соображениям производственного или архитектурного характера при наличии в цехах пожароопасных или взрывоопасных производств. Выбор местоположения, типа, мощности и других параметров главной понижающей подстанции в основном обуславливается величиной и характером электрических нагрузок и размещением их на генплане и в производственных, архитектурно-строительных и эксплуатационных требованиях. Важно, чтобы ГПП располагалась, возможно, ближе к центру питаемых его нагрузок. Намеченное место расположения уточняется по условиям планировки предприятия, ориентировочных габаритов и типа (отдельно стоящая, пристроенная, внутренняя, закрытая, комплектная) подстанции и возможности подвода высоковольтных линий от места ввода При выборе места расположения подстанции следует учитывать продолжительность работы приемников. Очевидно, что при одинаковой расчетной нагрузке, но различном числе часов работы подразделений завода подстанция должна быть расположена ближе к группе потребителей с большей продолжительностью работы (с большим коэффициентом использования). Допускается смещение подстанций на некоторое расстояние от геометрического центра питаемых ею нагрузок в сторону ввода от энергосистемы. Распределительные подстанции напряжением 6... 10 кВ также рекомендуется пристраивать или встраивать в производственные здания и совмещать с ближайшими трансформаторными подстанциями во всех случаях, когда это не вызывает значительного смещения ТП от центра их нагрузок. Выбор места РП в первую очередь определяется наличием двигателей напряжением выше 1 кВ или электропечей с трансформаторами. Если на объекте электроснабжения имеются потребители только напряжением до 1 кВ, питаемые от ТП, то место главной распределительной подстанции выбирается на генплане смещенным от центра нагрузки ближе к источнику питания. Если по условиям среды нельзя сделать встроенную или пристроенную РП, например, из-за взрывоопасности, то сооружается отдельное здание РП. Комплектные распределительные устройства напряжением до 1 кВ Комплектные распределительные устройства напряжением до 1 кВ состоят из полностью или частично закрытых шкафов или блоков со встроенными в них аппаратами, устройствами защиты и автоматики, измерительными приборами и вспомогательными устройствами. Принцип комплектных электротехнических устройств с выдвижными блоками улучшает эксплуатацию электрооборудования. Вместо ревизии и ремонта электрического аппарата на месте установки в стесненных и неудобных условиях стало возможным быстрое отсоединение аппарата от схемы и ремонт его в условиях мастерских. Создание комплектных устройств с выдвижными блоками повысило эксплуатационную надежность: благодаря замене ремонтируемого блока, на запасной появилась возможность работать во время ремонта блока на данном присоединении. При наличии штепсельных разъемов такая замена производится в течение короткого времени без снятия напряжения с данного узла при полной безопасности обслуживающего персонала. К комплектным распределительным устройствам напряжением до 1 кВ относятся распределительные щиты, посты управления, силовые пункты, щиты станций управления и т.п. Распределительные щиты. Распределительные щиты предназначены для приема и распределения электроэнергии переменного и постоянного тока напряжением до 1 кВ. Устанавливают их на трансформаторных и преобразовательных подстанциях, в машинных залах и на электростанциях. Щиты изготовляют в открытом и закрытом (шкафном) исполнении. Щиты открытого исполнения состоят из панелей, устанавливаемых в специальных электротехнических помещениях. Щиты закрытого исполнения устанавливают в шкафах и цехах промышленных предприятий. По условиям обслуживания щиты бывают с двухсторонним обслуживанием и односторонним. Щиты с двухсторонним обслуживанием часто именуют свободно стоящими, поскольку они требуют для обслуживания устройства проходов с двух сторон - с лицевой и задней, и, таким образом, их устанавливают в отдалении от стен. Щиты с односторонним обслуживанием принято называть прислонными, так как обычно их устанавливают непосредственно у стен помещения, обслуживают с лицевой стороны. Каркасы панелей в современных конструкциях щитов выполняют с применением различных профилей из листовой стали. В качестве коммутационных и защитных аппаратов на щитах устанавливают рубильники, предохранители, блоки выключатель - предохранитель, выключатели. Для обеспечения автоматической работы по схеме АВР на щитах устанавливают релейную аппаратуру. Распределительные щиты серии ЩО-70 предназначены для распределения электроэнергии трехфазного тока напряжением 380 В. Щиты рассчитаны на одностороннее обслуживание, защитных ограждений сверху и сзади не имеют. Щиты комплектуются из вводных, линейных, сек-ционных и торцовых моделей. Для смены предохранителей, осмотра и ремонта аппаратуры на каждой панели, кроме секционных, на фасадной стороне предусмотрена одностворчатая дверь, на которой установлены при-воды рубильников или кнопки управления выключателей. Для присоединения трех или четырех кабелей к аппаратам на номинальные токи 630 и 1000 А в панелях предусмотрены шинные сборки. Посты управления предназначены для управления электроприводами группы механизмов, связанных между собой общим технологическим процессом. Посты обычно устанавливают непосредственно в цехе так, чтобы управляемые с них объекты находились в поле зрения оператора. На таких постах устанавливают командную аппаратуру ручного и автоматического управления. Пункты и шкафы силовые. Пункты силовые распределительные предназначены для распределения электрической энергии и защиты электрических установок постоянного тока напряжением до 220 В или переменного тока напряжением до 660 В при перегрузках и коротких замыканиях. Пункты изготовляют в виде шкафов или устройств, собираемых из отдельных стандартных элементов: ящиков с соединительными шинами и ящиков с разными аппаратами. Преимущество этого устройства заключается в возможности получения разных схем из небольшого набора стандартных ящиков. Шкафы силовые распределительные ШР-11 применяют для приема и распределения электроэнергии в промышленных установках на номинальный ток до 400 А. В зависимости от типа шкафа на вводе устанавливают рубильник, два рубильника при питании шкафа от двух источников или рубильник с предохранителями. Шкафы имеют 5... 8 отходящих групп, укомплектованных предохранителями серии ПН2 или НПН2 на номинальные токи 60,100, 250 А. Шкафы представляют собой металлический корпус с дверью внутри которого установлена съемная сборка, представляющая собой раму с вводным рубильником, и предохранители отходящих линий. Пункты распределительные серии ПР изготовляют в виде шкафов утопленного, навесного и напольного исполнения со встроенными автоматическими выключателями типа А3700 на силу тока до 700 А и типа АЕ на силу тока до 100 А. Шкафы распределительные силовые СПМ-75 применяют в цеховых электроустановках промышленных предприятий для приема и распределения электроэнергии трехфазного переменного тока частотой 50 Гц при номинальном напряжении 380 В с защитой отходящих линий предохранителями. Шкафы имеют вводной рубильник и предохранители, расположенные один под другим по вертикали, образуя трехфазную группу. Шкафы распределительные СПА-77 применяют в тех же случаях, что и СПМ-75. Шкафы имеют вводной рубильник и автоматические выключатели на отходящих линиях. Силовые распределительные устройства серии СУ-9500 со встроенными в них устройствами автоматики применяют в силовых установках с трех-и четырехпроводными системами распределения трех-фазного тока частотой 50 Гц напряжением 380 В, а также в двухпроводной системе постоянного тока напряжением 220 В. Максимальная нагрузка на главные шины - 4000 А, на нулевую шину - 2000 А. Вводные распределительные устройства серии ВРУ предназначены для приема, распределения и учета электроэнергии и защиты отходящих линий в сетях трехфазного тока напряжением 380/220 В в сетях с глухозаземленной нейтралью. ВРУ применяют в общественных зданиях и жилых домах повышенной этажности. В серию ВРУ входят вводные и распределительные панели. Распределительные панели имеют аппаратуру для автоматического управления наружным освещением лестничных клеток. Максимальное число и сечение жил проводов и кабелей, присоединяемых к вводному зажиму: на 400 А - 4 х 150 мм2; на 250 А - 4 х 95 мм2; на 200 А - 2 х 95 мм2. ВРУ выполнены в защищенном исполнении. Габаритные размеры 1700 х 800 х 450 мм. Устройство шкафов серии ВРУ представляет собой сборку из панелей шкафного типа одно-стороннего обслуживания. Их корпуса не имеют боковых стенок, торцы крайних панелей сборки закрываются съемными металлическими листами. На съемной раме внутри корпуса установлены защитно-коммутационные аппараты. Аппараты, размещенные на одной панели, но питающиеся от разных вводов, разделены перегородками. Счетчики и трансформаторы тока установлены в отдельном отсеке. Ввод проводов и кабелей делают снизу, а вывод - как снизу, так и сверху через верхнюю съемную крышку. Корпуса панелей заземляют присоединением нулевых жил питающих кабелей к нулевой шине, общей для всех панелей. Щиты станций управления. Современные системы электропривода производственных машин и механизмов имеют сложные системы управления с большим числом контакторных аппаратов и регулирующих элементов. Требования режимов пуска, разгона, регулирования частоты вращения, торможения и установки электропривода, многообразие форм защиты и контроля за работой двигателя и установок определили довольно широкую номенклатуру станций управления электроприводами. Щиты станций управления устанавливают на крупных трансформаторных подстанциях в машинных залах промышленных предприятий. Щиты выполняют одно- и двухрядными. ЩСУ комплектуют из блоков и панелей управления. Комплектные трансформаторные подстанции Комплектные трансформаторные подстанции применяют для приема, распределения и преобразования электрической энергии трехфазного тока частотой 50 Гц. Применение комплектных распределительных устройств и трансформаторных подстанций позволяет сократить сроки монтажных работ, снизить их стоимость и улучшить качество По числу трансформаторов КТП могут быть однотрансформаторными, двухтрансформатор-ными и трехтрансформаторными. По роду установки КТП могут быть: внутренней установки с масляными, сухими или заполненными негорючей жидкостью трансформаторами; наружной установки (только с масляными трансформаторами); смешанной установки с расположением РУ высшего напряжения и трансформатора снаружи, а РУ низшего напряжения внутри помещения. КТП можно разделить на четыре основные группы. 1. КТП наружной установки мощностью 25...400 кВ-А, напряжением 6...35/0,4 кВ, применяемые для электроснабжения объектов сельскохозяйственного назначения. Это в основном мачтовые подстанции. КТП данной группы состоят из шкафа ввода ВН, трансформатора и шкафа НН, укомплектованного на отходящих линиях автоматическими выключателями. 2. КТП внутренней и наружной установки напряжением до 10 кВ включительно мощностью 160... 2500 кВ•А, которые в основном используются для электроснабжения промышленных предприятий. КТП этой группы состоят из шкафов ввода на напряжение 10 кВ и РУ напряжением до 1 кВ. Для КТП применяют как масляные, так и заполненные негорючей жидкостью или сухие трансформаторы специального исполнения с боковыми выводами, для КТП наружной установки - только масляные. 3. Сборные и комплектные трансформаторные Конструктивное исполнение комплектных трансформаторных подстанций Комплектные трансформаторные подстанции напряжением 6...10 к В. В целях наибольшего приближения к потребителям рекомендуется применять внутренние, встроенные в здание или пристроенные к нему, трансформаторные подстанции. Встроенные в здание или пристроенные трансформаторные подстанции имеют выход из камер с масляными трансформаторами и высоковольтными аппаратами непосредственно наружу. Внутрицеховые подстанции могут размещаться на первом и втором этажах производств, которые согласно противопожарным требованиям отнесены к категориям Г и Д первой и второй степеням огнестойкости. Внутрицеховые подстанции размещаются как открыто, так и в отдельных помещениях. Размещение внутрицеховых подстанций в помещениях пыльных и с химически активной средой допускается при условии принятия мер, обеспечивающих надежную работу электрооборудования. В производственных помещениях трансформаторы и РУ могут устанавливаться, как открыто, так и в камерах и отдельных помещениях. На каждой открыто установленной цеховой подстанции и КТП могут быть применены масляные трансформаторы мощностью до 1600 кВ•А. Расстояние в свету между масляными трансформаторами должно быть не менее 10 м. Для внутрицеховых подстанций и КТП с сухими трансформаторами или с негорючим диэлектриком их мощность и расстояние между ними не ограничиваются. КРУ и КТП следует, как правило, размещать в пределах «мертвой зоны» подъемно-транспортных механизмов. В цехах с интенсивным движением внутризаводского транспорта КРУ и КТП следует ограждать. Ширина прохода для управления и ремонта КРУ выкатного типа и КТП должна обеспечивать удобство обслуживания и ремонта (0,6...0,8 м). Ввод от трансформатора на щит может быть выполнен двумя способами: кабелями снизу на вводных панелях, предназначенных для кабельных вводов; шинами сверху с помощью вводных панелей или же непосредственно к сборным шинам через разъединитель, установленный на стене. Рис 14. Однотрансформаторная подстанция КТП 630/6-10/0,4: 1- Шкаф распределительного устройства НН; 2 – силовой трансформатор мощностью 630 кВ•А; 3 – шкаф ввода ВН (высоковольтный блок) 4 – высоковольтный кабель Рис. 15. Схема комплектной трансформаторной подстанции наружной установки Рис. 16. План комплектной объемной трансформаторной подстанции на два трансформатора мощностью по 630 кВ•А: 1- трансформаторы; 2,3,4,5 – железобетонные блоки Технология монтажа силовых трансформаторов предусматривает следующую последовательность работ: - приемка монтажной площадки или помещения под монтаж; - приемка трансформатора в монтаж, проверка герметичности; - предварительная оценка состояния изоляции; - ревизия трансформатора (в случае необходимости); - подготовка узлов и деталей трансформаторов; - подготовка к контрольному прогреву, подсушке и сушке; сушка трансформатора (при необходимости после предварительной оценки состояния изоляции); - заливка трансформатора и пропитка изоляции маслом после сушки; - проверка изоляционных характеристик после заливки масла, окончательная сборка и монтаж трансформатора и всех узлов, перекатка его на место установки; - испытание и наладка, включение трансформатора. Монтаж трансформаторных подстанций и распределительных устройств. КРУ монтируются только в помещениях, где закончены все строительные работы. Установочные конструкции под КРУ изготавливают из уголков или швеллеров, которые устанавливают горизонтально, выверяя по уровню. Неровность допускается 1 мм на 1 м длинны и 5 мм по всей длине. Согласно ПУЭ эти конструкции присоединяют к контуру заземления полосовой сталью 40 х 4 мм не менее чем в двух местах. При монтаже шкафов КРУ в помещении ширина прохода для однорядной установки должна быть равной длине выкатной тележки плюс 0,8 м, для двухрядной – длине одной тележки плюс 1 м. расстояние от шкафов до боковых стен не менее 0,1 м. Монтаж камер КСО и шкафов КРУ начинают с крайней камеры. Проверяют правильность установки камеры по горизонтали и вертикали только после этого устанавливают следующую камеру. По окончании установки корпуса камер соединяют болтами, начиная с крайней камеры. В первую очередь затягивают нижние болты , а затем верхние Монтаж трансформаторных под-станций и распределительных устройств. С помощью шнура проверяют прямолинейность верхней части камер и при необходимости регулируют их положение с помощью стальных подкладок. Вкатывая тележку, проверяют правильность установки шкафов КРУ. Подвижные части те-лежки и неподвижные части шкафа должны совпадать, а положение тележки надежно фиксироваться. Особенно тщательно проверяют работу шторок, которые должны опускаться и подниматься без перекосов и заеданий, а также действие механической блокировки. Выверенные шкафы КРУ и камеры КСО окончательно закрепляются электросваркой к установочной конструкции в четырех углах. Что также обеспечивает надежное заземление шкафов и камер. Далее выполняют монтаж сборных шин, соблюдая цвета фаз. Для этого необходимо снять с шинного отсека шкафа наружные листы. Ответвительные шины присоединяют к сборным болтами. Технология монтажа комплектных распределительных устройств (КРУ) внутренней установки Приборы и аппараты, снятые на время перевозки, устанавливают после монтажа шин и присоединяют к первичным и вторичным цепям согласно схемы. Поверхности сборных шин в местах контактов промывают и смазывают вазелином. Эти поверхности нельзя зачищать напильником или наждачной шкуркой, так как на заводе эти места порыты специальным сплавом олова с цинком против коррозии. После установки сборных шин всей секции затягивают болты всех контактных соединений. Проверяют работу выключателей, разъединителей, вспомогательных контактов и блокировочных устройств. Ножи разъединителя в камерах КСО при включении должны входить в неподвижные контакты плавно, без перекосов на глубину 30 мм и не доходить до упора на 3 – 5 мм. Привод разъединителя должен автоматически запираться в крайних положениях фиксатором. Выключатели типа ВМП – 10 после монтажа их на опорные конструкции, выверяют по верти-кали и по осям камеры не допуская перекосов. Приводы выключателей поступают на монтаж обычно в собранном и отрегулированном со-стоянии. Регулировку привода совместно с выключателе проводят по заводской инструкции. После подсоединения отходящих и питающих кабелей и проводов цепей вторичной коммутации все металлические конструкции КРУ (КСО) присоединяют к сети заземления. Заземление выполняют приваркой рам корпусов камеры в двух местах к магистрали заземления. Монтаж комплектных трансформаторных подстанций Приступая к монтажу комплектной трансформаторной подстанции внутренней установки проверяют оси подстанции, выверяют отметки основания под опорные швеллеры распредели-тельного устройства и салазки трансформаторов, а также необходимые размеры строительной части Комплектные трансформаторные подстанции (КТП). Блоки распределительного устройства поднимают инвентарными стропами, которые крепят за скобы. Если скобы отсутствуют, то блоки распределительного устройства устанавливают на фундаменты с помощью катков, выполненных из отрезков металлических труб. Если блоки распределительного устройства не имеют опорных швеллеров то увеличивают количество катков не мене четырех на блок. Многоблочные распределительные устройства монтируют поэтапно. Блоки устанавливают поочередно, предварительно снимая специальные заглушки, которые закрывают выступающие концы шин. Установочные швеллеры шкафов соединяют сваркой с помощью перемычек из полосовой стали сечением 40 х 4 мм. после установки блоков приваривают шины заземления к опорным швеллерам. Комплектные трансформаторные подстанции (КТП)Распределительные устройства соединяют с трансформатором гибкой перемычкой и закрывают коробом из листовой стали, который поставляется в комплекте с комплектной трансформаторной подстанцией. При выполнении присоединения к выводам трансформатора необходимо знать, что чрезмерные изгибающие усилия при затяжке гаек могут вызвать течь масла. Соединение шин выполняют с помощью болтов. Короб к трансформатору и вводному шкафу крепят болтами. По окончании монтажа блоков КТП проверяют исправность проводки приборов, надежность крепления болтовых соединений, особенно контактных и заземляющих, работу механической блокировки, состояние изоляторов. После этого подсоединяют кабели высокого и низкого напряжения. Для заземления КТП швеллеры приваривают к контуру заземления в двух местах. |
Дистанционный раздел программы повышения квалификации руководителей... «учебный центр профессиональной подготовки рабочих строительно-монтажного комплекса атомной отрасли» |
Дистанционный раздел программы повышения квалификации руководителей... «Технология выполнения строительных, монтажных, пусконаладочных работ на объектах использования атомной энергии» |
||
Дистанционный раздел программы повышения квалификации руководителей... «Технология выполнения строительных, монтажных, пусконаладочных работ на объектах использования атомной энергии» |
Дистанционный раздел программы повышения квалификации руководителей... «Устройство, монтаж и пусконаладочные испытания электрических сетей управления системами безопасности жизнеобеспечения на объектах... |
||
Дистанционный курс программы шифр с (Л) повышения квалификации руководящих... «Организация работ в строительстве и производство монтажа при устройстве внутренних инженерных систем оборудования зданий и сооружений... |
Дистанционный курс программы шифр с (Л) повышения квалификации руководящих... «Организация работ в строительстве и производство монтажа при устройстве внутренних инженерных систем оборудования зданий и сооружений... |
||
Дистанционный раздел программы повышения квалификации инженерно-технических... Тема Нормативная база, техническое регулирование и саморегулирование в строительстве 3 |
Дистанционный раздел программы повышения квалификации инженерно-технических... Тема Нормативная база, техническое регулирование и саморегулирование в строительстве 3 |
||
Дистанционный раздел программы повышения квалификации инженерно-технических... Устройство фундаментов предназначено для сотрудников строительных организаций, подрядных организаций, участвующих в строительстве... |
Программы повышения квалификации инженерно-технических работников... Порядок разработки программ обеспечения качества для атомных станций (покас) с-10 |
||
Программы повышения квалификации инженерно-технических работников... «Организация работ в строительстве и производство монтажа при устройстве наружных сетей (водопровод, сети канализации, сети теплоснабжения)... |
Дистанционный раздел программы повышения квалификации инженерно-технических... «Работы по подготовке проектов внутренних инженерных систем водоснабжения и канализации» (П 2) |
||
Ы и темы программы повышения квалификации руководителей линейных... №2: Положения нормативных актов, регламентирующих работу железнодорожного транспорта, по вопросам подготовки и работы станции в осеннее-зимний... |
План график повышения квалификации руководителей и специалистов нефтегазовой отрасли на 2015 год ... |
||
Программы повышения квалификации руководящих работников и специалистов... «Работы в составе инженерно-геологических изысканий и инженерно-геотехнических изысканий на объектах использования атомной энергии.... |
Тематические планы и Учебные программы Дистанционный практикоориентированный образовательный ресурс для повышения квалификации управленческих и педагогических кадров образовательных... |
Поиск |