Компьютерные информационные технологии курс лекций


Скачать 4.88 Mb.
Название Компьютерные информационные технологии курс лекций
страница 14/19
Тип Документы
rykovodstvo.ru > Руководство эксплуатация > Документы
1   ...   11   12   13   14   15   16   17   18   19
Тема 1.6. Технологии искусственного интеллекта
Базовые понятия Искусственного Интеллекта
Термин интеллект (intelligence) происходит от латинского intellectus — что означает ум, рассудок, разум; мыслительные с пособности человека. Соответственно искусственный интеллект (artificial intelligence) — ИИ (AI) обычно толкуется как свойство автоматических систем брать на себя отдельные функции интеллекта человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий.

Таким образом, интеллектом можно называть способность мозга решать (интеллектуальные) задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам.

В этом определении под термином "знания" подразумевается не только ту информацию, которая поступает в мозг через органы чувств. Такого типа знания чрезвычайно важны, но недостаточны для интеллектуальной деятельности. Дело в том, что объекты окружающей нас среды обладают свойством не только воздействовать на органы чувств, но и находиться друг с другом в определенных отношениях. Ясно, что для того, чтобы осуществлять в окружающей среде интеллектуальную деятельность (или хотя бы просто существовать), необходимо иметь в системе знаний модель этого мира. В этой информационной модели окружающей среды реальные объекты, их свойства и отношения между ними не только отображаются и запоминаются, но и, как это отмечено в данном определении интеллекта, могут мысленно "целенаправленно преобразовываться". При этом существенно то, что формирование модели внешней среды происходит "в процессе обучения на опыте и адаптации к разнообразным обстоятельствам".

Под алгоритмом понимают точное предписание о выполнении в определенном порядке системы операций для решения любой задачи из некоторого данного класса (множества) задач. В математике и кибернетике класс задач определенного типа считается решенным, когда для ее решения установлен алгоритм. Нахождение алгоритмов является естественной целью человека при решении им разнообразных классов задач. Отыскание алгоритма для задач некоторого данного типа связано с тонкими и сложными рассуждениями, требующими большой изобретательности и высокой квалификации. Принято считать, что подобного рода деятельность требует участия интеллекта человека. Задачи, связанные с отысканием алгоритма решения класса задач определенного типа, можно называть интеллектуальными.

Что же касается задач, алгоритмы решения которых уже установлены, то "излишне приписывать им такое мистическое свойства, как "интеллектуальность". В самом деле, после того, как такой алгоритм уже найден, процесс решения соответствующих задач становится таким, что его могут в точности выполнить человек, вычислительная машина (должным образом запрограммированная) или робот, не имеющие ни малейшего представления о сущности самой задачи. Требуется только, чтобы лицо, решающее задачу, было способно выполнять те элементарные операции, их которых складывается процесс, и, кроме того, чтобы оно педантично и аккуратно руководствовалось предложенным алгоритмом. Такое лицо, действуя, как говорят в таких случаях, чисто машинально, может успешно решать любую задачу рассматриваемого типа.

Поэтому представляется совершенно естественным исключить из класса интеллектуальных такие задачи, для которых существуют стандартные методы решения. Примерами таких задач могут служить чисто вычислительные задачи: решение системы линейных алгебраических уравнений, численное интегрирование дифференциальных уравнений и т. д. Для решения подобного рода задач имеются стандартные алгоритмы, представляющие собой определенную последовательность элементарных операций, которая может быть легко реализована в виде программы для вычислительной машины. В противоположность этому для широкого класса интеллектуальных задач, таких, как распознавание образов, игра в шахматы, доказательство теорем и т. п., напротив это формальное разбиение процесса поиска решения на отдельные элементарные шаги часто оказывается весьма затруднительным, даже если само их решение несложно.

Таким образом, можно перефразировать определение интеллекта как универсальный сверхалгоритм, который способен создавать алгоритмы решения конкретных задач.

Деятельность мозга (обладающего интеллектом), направленную на решение интеллектуальных задач, называется мышлением, или интеллектуальной деятельностью. Интеллект и мышление органически связаны с решением таких задач, как доказательство теорем, логический анализ, распознавание ситуаций, планирование поведения, игры и управление в условиях неопределенности. Характерными чертами интеллекта, проявляющимися в процессе решения задач, являются способность к обучению, обобщению, накоплению опыта (знаний и навыков) и адаптации к изменяющимся условиям в процессе решения задач. Благодаря этим качествам интеллекта мозг может решать разнообразные задачи, а также легко перестраиваться с решения одной задачи на другую. Таким образом, мозг, наделенный интеллектом, является универсальным средством решения широкого круга задач (в том числе неформализованных) для которых нет стандартных, заранее известных методов решения.

Следует иметь в виду, что существуют и другие, чисто поведенческие (функциональные) определения. Так, по А. Н. Колмогорову, любая материальная система, с которой можно достаточно долго обсуждать проблемы науки, литературы и искусства, обладает интеллектом. Другим примером поведенческой трактовки интеллекта может служить известное определение А. Тьюринга. Его смысл заключается в следующем. В разных комнатах находятся люди и машина. Они не могут видеть друг друга, но имеют возможность обмениваться информацией (например, с помощью электронной почты). Если в процессе диалога между участниками игры людям не удается установить, что один из участников — машина, то такую машину можно считать обладающей интеллектом.

Кстати интересен план имитации мышления, предложенный А. Тьюрингом. "Пытаясь имитировать интеллект взрослого человека, мы вынуждены много размышлять о том процессе, в результате которого человеческий мозг достиг своего настоящего состояния… Почему бы нам вместо того, чтобы пытаться создать программу, имитирующую интеллект взрослого человека, не попытаться создать программу, которая имитировала бы интеллект ребенка? Ведь если интеллект ребенка получает соответствующее воспитание, он становится интеллектом взрослого человека… Наш расчет состоит в том, что устройство, ему подобное, может быть легко запрограммировано… Таким образом, мы расчленим нашу проблему на две части: на задачу построения "программы-ребенка" и задачу "воспитания" этой программы".
Три основных направления в моделировании ИИ
В рамках первого подхода объектом исследований являются структура и механизмы работы мозга человека, а конечная цель заключается в раскрытии тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспериментов с ними, выдвижение новых гипотез относительно механизмов интеллектуальной деятельности, совершенствование моделей и т.д.

Второй подход в качестве объекта исследования рассматривает ИИ. Здесь речь идет о моделировании интеллектуальной деятельности с помощью вычислительных машин. Целью работ в этом направлении является создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека.

Наконец, третий подход ориентирован на создание смешанных человеко-машинных, или интерактивных интеллектуальных систем, на симбиоз возможностей естественного и искусственного интеллекта. Важнейшими проблемами в этих исследованиях является оптимальное распределение функций между естественным и искусственным интеллектом и организация диалога между человеком и машиной.

Самыми первыми интеллектуальными задачами, которые стали решаться при помощи ЭВМ были логические игры (шашки, шахматы), доказательство теорем. Американский кибернетик А. Самуэль составил для вычислительной машины программу, которая позволяла ей играть в шашки, причем в ходе игры машина обучалась или, по крайней мере, создавала впечатление, что обучается, улучшая свою игру на основе накопленного опыта. В 1962 г. эта программа сразилась с Р. Нили, сильнейшим шашистом в США и победила.

Каким образом машине удалось достичь столь высокого класса игры? Естественно, что в машину были программно заложены правила игры так, что выбор очередного хода был подчинен этим правилам. На каждой стадии игры машина выбирала очередной ход из множества возможных ходов согласно некоторому критерию качества игры. В шашках (как и в шахматах) обычно невыгодно терять свои фигуры, и, напротив, выгодно брать фигуры противника. Игрок (будь он человек или машина), который сохраняет подвижность своих фигур и право выбора ходов и в то же время держит под боем большое число полей на доске, обычно играет лучше своего противника, не придающего значения этим элементам игры. Описанные критерии хорошей игры сохраняют свою силу на протяжении всей игры, но есть и другие критерии, которые относятся к отдельным ее стадиям — дебюту, миттэндшпилю, эндшпилю. Разумно сочетая такие критерии (например в виде линейной комбинации с экспериментально подбираемыми коэффициентами или более сложным образом), можно для оценки очередного хода машины получить некоторый числовой показатель эффективности — оценочную функцию. Тогда машина, сравнив между собой показатели эффективности очередных ходов, выберет ход, соответствующий наибольшему показателю. Подобная автоматизация выбора очередного хода не обязательно обеспечивает оптимальный выбор, но все же это какой-то выбор, и на его основе машина может продолжать игру, совершенствуя свою стратегию (образ действия) в процессе обучения на прошлом опыте. Формально обучение состоит в подстройке параметров (коэффициентов) оценочной функции на основе анализа проведенных ходов и игр с учетом их исхода.

По мнению А. Самуэля, машина, использующая этот вид обучения, может научиться играть лучше, чем средний игрок, за относительно короткий период времени. Можно сказать, что все эти элементы интеллекта, продемонстрированные машиной в процессе игры в шашки, сообщены ей автором программы. Но не следует забывать, что программа эта не является "жесткой", заранее продуманной во всех деталях. Она совершенствует свою стратегию игры в процессе самообучения. И хотя процесс "мышления" у машины существенно отличен от того, что происходит в мозгу играющего в шашки человека, она способна у него выиграть.

Ярким примером сложной интеллектуальной игры до недавнего времени являлись шахматы. В 1974 г. состоялся международный шахматный турнир машин, снабженных соответствующими программами. Как известно, победу на этом турнире одержала советская машина с шахматной программой "Каисса". Почему здесь употреблено "до недавнего времени"? Дело в том, что недавние события показали, что несмотря на довольно большую сложность шахмат, и невозможность, в связи с этим произвести полный перебор ходов, возможность перебора их на большую глубину, чем обычно, очень увеличивает шансы на победу. К примеру, по сообщениям в печати, компьютер фирмы IBM, победивший Каспарова, имел 256 процессоров, каждый из которых имел 4 Гб дисковой памяти и 128 Мб оперативной. Весь этот комплекс мог просчитывать более 100'000'000 ходов в секунду. До недавнего времени редкостью был компьютер, могущий делать такое количество целочисленных операций в секунду, а здесь мы говорим о ходах, которые должны быть сгенерированы и для которых просчитаны оценочные функции. Хотя с другой стороны, этот пример говорит о могуществе и универсальности переборных алгоритмов.

В настоящее время существуют и успешно применяются программы, позволяющие машинам играть в деловые или военные игры, имеющие большое прикладное значение. Здесь также чрезвычайно важно придать программам присущие человеку способность к обучению и адаптации. Одной из наиболее интересных интеллектуальных задач, также имеющей огромное прикладное значение, является задача обучения распознавания образов и ситуаций. Решением ее занимались и продолжают заниматься представители различных наук — физиологи, психологи, математики, инженеры. Такой интерес к задаче стимулировался фантастическими перспективами широкого практического использования результатов теоретических исследований: читающие автоматы, системы ИИ, ставящие медицинские диагнозы, проводящие криминалистическую экспертизу и т. п., а также роботы, способные распознавать и анализировать сложные сенсорные ситуации.

В 1957 г. американский физиолог Ф. Розенблатт предложил модель зрительного восприятия и распознавания — перцептрон. Появление машины, способной обучаться понятиям и распознавать предъявляемые объекты, оказалось чрезвычайно интересным не только физиологам, но и представителям других областей знания и породило большой поток теоретических и экспериментальных исследований.

Перцептрон или любая программа, имитирующая процесс распознавания, работают в двух режимах: в режиме обучения и в режиме распознавания. В режиме обучения некто (человек, машина, робот или природа), играющий роль учителя, предъявляет машине объекты и о каждом их них сообщает, к какому понятию (классу) он принадлежит. По этим данным строится решающее правило, являющееся, по существу, формальным описанием понятий. В режиме распознавания машине предъявляются новые объекты (вообще говоря, отличные от ранее предъявленных), и она должна их классифицировать, по возможности, правильно.

Проблема обучения распознаванию тесно связана с другой интеллектуальной задачей — проблемой перевода с одного языка на другой, а также обучения машины языку. При достаточно формальной обработке и классификации основных грамматических правил и приемов пользования словарем можно создать вполне удовлетворительный алгоритм для перевода, скажем научного или делового текста. Для некоторых языков такие системы были созданы еще в конце 60-г. Однако для того, чтобы связно перевести достаточно большой разговорный текст, необходимо понимать его смысл. Работы над такими программами ведутся уже давно, но до полного успеха еще далеко. Имеются также программы, обеспечивающие диалог между человеком и машиной на урезанном естественном языке.

Что же касается моделирования логического мышления, то хорошей модельной задачей здесь может служить задача автоматизации доказательства теорем. Начиная с 1960 г., был разработан ряд программ, способных находить доказательства теорем в исчислении предикатов первого порядка. Эти программы обладают, по словам американского специалиста в области ИИ Дж. Маккатти, "здравым смыслом", т. е. способностью делать дедуктивные заключения.

В программе К. Грина и др., реализующей вопросно-ответную систему, знания записываются на языке логики предикатов в виде набора аксиом, а вопросы, задаваемые машине, формулируются как подлежащие доказательству теоремы. Большой интерес представляет "интеллектуальная" программа американского математика Хао Ванга. Эта программа за 3 минуты работы IBM-704 вывела 220 относительно простых лемм и теорем из фундаментальной математической монографии, а затем за 8.5 мин выдала доказательства еще 130 более сложных теорем, часть их которых еще не была выведена математиками. Правда, до сих пор ни одна программа не вывела и не доказала ни одной теоремы, которая бы, что называется "позарез" была бы нужна математикам и была бы принципиально новой.

Очень большим направлением систем ИИ является роботехника. В чем основное отличие интеллекта робота от интеллекта универсальных вычислительных машин? Для ответа на этот вопрос уместно вспомнить принадлежащее великому русскому физиологу И. М. Сеченову высказывание: "… все бесконечное разнообразие внешних проявлений мозговой деятельности сводится окончательно лишь к одному явлению — мышечному движению". Другими словами, вся интеллектуальная деятельность человека направлена в конечном счете на активное взаимодействие с внешним миром посредством движений. Точно так же элементы интеллекта робота служат прежде всего для организации его целенаправленных движений. В то же время основное назначение чисто компьютерных систем ИИ состоит в решении интеллектуальных задач, носящих абстрактный или вспомогательный характер, которые обычно не связаны ни с восприятием окружающей среды с помощью искусственных органов чувств, ни с организацией движений исполнительных механизмов.

Первых роботов трудно назвать интеллектуальными. Только в 60-х годах появились очуствленные роботы, которые управлялись универсальными компьютерами. К примеру еще в 1969 г. в Электротехнической лаборатории (Япония) началась разработка проекта "промышленный интеллектуальный робот". Цель этой разработки — создание очуствленного манипуляционного робота с элементами искусственного интеллекта для выполнения сборочно-монтажных работ с визуальным контролем. Манипулятор робота имеет шесть степеней свободы и управляется мини-ЭВМ NEAC-3100 (объем оперативной памяти 32000 слов, объем внешней памяти на магнитных дисках 273000 слов), формирующей требуемое программное движение, которое отрабатывается следящей электрогидравлической системой. Схват манипулятора оснащен тактильными датчиками. В качестве системы зрительного восприятия используются две телевизионные камеры, снабженные красно-зелено-синими фильтрами для распознавания цвета предметов. Поле зрения телевизионной камеры разбито на 64*64 ячеек. В результате обработки полученной информации грубо определяется область, занимаемая интересующим робота предметом. Далее, с целью детального изучения этого предмета выявленная область вновь делится на 4096 ячеек. В том случае, когда предмет не помещается в выбранное "окошко", оно автоматически перемещается, подобно тому, как человек скользит взглядом по предмету. Робот Электротехнической лаборатории был способен распознавать простые предметы, ограниченные плоскостями и цилиндрическими поверхностями при специальном освещении.

Постепенно характеристики роботов монотонно улучшались, но до сих пор они еще далеки по понятливости от человека, хотя некоторые операции уже выполняют на уровне лучших жонглеров. К примеру, удерживают на лезвии ножа шарик от настольного тенниса.

Еще, пожалуй, здесь можно выделить работы Киевского института кибернетики, где ведется комплекс исследований, направленных на разработку элементов интеллекта роботов. Особое внимание в этих исследованиях уделяется проблемам распознавания изображений и речи, логического вывода (автоматического доказательства теорем) и управления с помощью нейроподобных сетей.
1   ...   11   12   13   14   15   16   17   18   19

Похожие:

Компьютерные информационные технологии курс лекций icon Компьютерные информационные технологии курс лекций
Именно этим опреде­ляется актуальность и необходимость освоения основ компью­терных информационных технологий. Знание компьютерных...
Компьютерные информационные технологии курс лекций icon Российской Федерации Тольяттинский государственный университет Кафедра...
Курс лекций дисциплины «Компьютерные технологии и сапр» для студентов специальностей 120500, 120507, 120700 очной
Компьютерные информационные технологии курс лекций icon Учебное пособие (Курс лекций) по учебной дисциплине «Информационные...
Демьянов А. В. преподаватель фгбоу впо «Брянская государственная сельскохозяйственная академия» Мичуринского филиала
Компьютерные информационные технологии курс лекций icon Отчет по практике «Информационные компьютерные системы и технологии...
«Информационные компьютерные системы и технологии в ресторанно-гостиничном бизнесе»
Компьютерные информационные технологии курс лекций icon Лекция Введение в курс «Компьютерные технологии в науке и образовании»
Лекция Классификация и характеристика программных средств информационной технологии обучения (ито) 18
Компьютерные информационные технологии курс лекций icon Курс лекций ббк20. 1 я7 к 17 Калыгин В. Г
К а л ы г и н В. Г. Промышленная экология. Курс лекций. М.: Изд-во мнэпу, 2000. 240 с
Компьютерные информационные технологии курс лекций icon Конспект лекций по дисциплине системы обработки экономической информации...
Понятие информационная потребность тесно связано с понятием цели и функции управления. Можно сказать, что потребность в информации...
Компьютерные информационные технологии курс лекций icon 1. Предмет и основные понятия корпоративных информационных систем. 4
Компьютерные информационные технологии в управлении экономическим объектом. Классификация систем управления. 4
Компьютерные информационные технологии курс лекций icon Компьютерные, сетевые и информационные технологии
Магда Ю. С. Микроконтроллеры pic 24. Архитектура и программирование / Ю. С. Магда.— Москва : дмк : Додэка-xxi, 2009.— 240 с
Компьютерные информационные технологии курс лекций icon Курс лекций по дисциплине: «Санитария и гигиена» 2015г
Курс лекций предназначен для изучения дисциплины «Санитария и гигиена» обучающимися 1 курса специальности «Парикмахер»
Компьютерные информационные технологии курс лекций icon Курс лекций, прочитанный для студентов Московской Духовной Академии «Духовная Библиотека»
Когда я по благословению церковных властей читал курс лекций в Академии, то не предполагал, что они когда-нибудь будут изданы
Компьютерные информационные технологии курс лекций icon Курс лекций по дисциплине оп. 13 «автомобильные эксплуатационные материалы» 2016 г
Курс лекций содержит основные сведения по производству и применению автомобильных эксплуатационных материалов. В данном курсе рассмотрены...
Компьютерные информационные технологии курс лекций icon Морозова М. А. Информационные технологии в социально-культурном сервисе и туризме. Оргтехника
Информационные технологии, используемые в гостиничном комплексе «Континент»
Компьютерные информационные технологии курс лекций icon Программа дисциплины «информационные технологии в менеджменте» для...
Дисциплина включает два раздела: «Часть I. Методы и инструменты анализа данных в логистике» (I курс, 3 и 4 модуль) и «Часть II. Системы...
Компьютерные информационные технологии курс лекций icon Курс лекций Педагогическое общество России Москва 2001
Б 53 Социальное прогнозирование. Курс лекций.— М.: Педагогическое общество России 2002. — 392 с
Компьютерные информационные технологии курс лекций icon Т. Е. Мамонова информационные технологии
Информационные технологии. Организация информационных процессов. Технология компьютерного моделирования: учебное пособие / Т. Е....

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск