Обслуживание силовых трансформаторов Предисловие


Скачать 2.41 Mb.
Название Обслуживание силовых трансформаторов Предисловие
страница 8/16
Тип Документы
rykovodstvo.ru > Руководство эксплуатация > Документы
1   ...   4   5   6   7   8   9   10   11   ...   16

10. Испытания трансформатора и профилактические работы, связанные с его отключением


Испытания и измерения силовых трансформаторов, регламентируемые [2, 3], производятся с определенной периодичностью в процессе эксплуатации в целях проверки основных технических характеристик трансформатора и отдельных его узлов.

При работе трансформатора в энергоблоке эти испытания приурочиваются ко времени вывода в ремонт котла, турбины и турбогенератора.

В объем испытаний и измерений входят испытания, позволяющие оценить состояние изоляции, а также:

  • измерение потерь холостого хода при малом однофазном возбуждении;

  • измерение активного сопротивления обмоток (R60 и R15, т.е. через 60 и 15 с после включения мегаомметра);

  • измерение коэффициента трансформации;

  • проверка группы соединения обмоток;

  • испытание изоляции приложенным напряжением.

Состояние изоляции оценивается по результатам измерения R60 и R15 каждой обмотки по отношению к другим заземленным обмоткам. Измерения производят при температуре не ниже 10 °С у трансформаторов мощностью до 80 МВ∙А и напряжением до 150 кВ и при температуре не менее нижнего значения температуры, приведенного в паспорте, у трансформаторов 220-1150 кВ и у трансформаторов мощностью свыше 80 МВ∙А, напряжением 110 и 150 кВ. У трансформаторов, не подвергавшихся прогреву, за температуру измерений принимается температура верхних слоев масла, а у трансформаторов, подвергавшихся нагреву, - средняя температура обмотки ВН фазы В, определяемая по сопротивлению постоянному току не ранее чем через 1-1;5 ч после отключения нагрева (или отключения трансформатора из работы) на спаде температуры.

Сопротивление изоляции измеряется мегаомметром 2500 В. Тангенс угла диэлектрических потерь (tg δ) измеряется по перевернутой схеме при напряжении 10 кВ, но не более 60 % испытательного напряжения.

В процессе ревизии активной части трансформатора (в период монтажа, ремонта, сушки изоляции) состояние увлажненности его обмоток оценивается измерением отношения ΔС/С с помощью серийного прибора ПЕКИ-1 (в энергосистемах применяют также старые приборы ПКВ-7). Результат измерения ΔС/С не нормируется, но используется при комплексном рассмотрении характеристик изоляции, полученных другими способами измерений. Результаты проведенных измерений сравнивают с заводскими характеристиками, приведенными в паспорте трансформатора. При необходимости результаты измерения R60 и tg δ приводят к температуре, указанной в паспорте, путем пересчета в зависимости от разности температур.

Характеристики изоляции необходимо измерять всегда по одним и тем же схемам и в определенной последовательности.

При комплексном рассмотрении результатов измерений (сопротивление изоляции, tg δ, емкости обмоток относительно земли и друг друга, относительного прироста емкости при изменении частоты или длительности разряда) дается предварительная оценка состояния изоляции и заключение о необходимости сушки изоляции. При вводе в эксплуатацию нового трансформатора необходимо принимать во внимание условия транспортировки, хранения, правильность проведения монтажных работ, характеристики масла в баке трансформатора, а также длительность нахождения активной части в разгерметизированном состоянии при ревизии во время монтажа (то же при ремонте).

Измерение потерь холостого хода для трансформаторов 10000 кВ∙А и более производят при пониженном напряжении (возбуждении) перед измерениями сопротивления постоянному току, чтобы избежать повышения потерь XX из-за намагничивания стали трансформатора. Снятие остаточного намагничивания производят однократным плавным увеличением и последующим плавным снижением возбуждения переменным напряжением.

По результатам измерения определяют состояния магнитопровода трансформатора (замыкание листов стали магнитопровода, образование по различным причинам короткозамкнутых контуров в узлах крепления магнитопровода). Значение потерь XX в эксплуатации не нормируется, так как со временем из-за ухудшения свойств стали потери XX имеют тенденцию к повышению. Если магнитопровод не имеет дефектов, то измерения показывают равенство потерь на крайних стержнях (у новых трансформаторов различие не более 10 %) и увеличенное примерно на 30 % значение потерь на среднем стержне магнитопровода.

Потери XX у трехфазных трансформаторов измеряют при трехфазном или при однофазном возбуждении. Для измерения потерь при однофазном напряжении проводят три опыта с измерением:

  • замыкают накоротко обмотку фазы А при возбуждении фаз В и С трансформатора;

  • замыкают накоротко обмотку фазы В при возбуждении фаз А и С;

  • аналогично для фазы С.

Потери в трансформаторе

,

где Р, Р и Р - потери, определенные при указанных трех опытах (за вычетом потребления прибора) при одинаковых значениях подводимого напряжения.

При измерении сопротивления обмоток постоянному току выявляют дефекты в местах паек (обрывы) обмотки, а также в различных контактах схемы соединения обмоток.

Сопротивление обмоток постоянному току измеряют по схеме "моста" или по методу падения напряжения (с помощью вольтметра и амперметра). Измерять сопротивление рекомендуется при установившейся температуре обмоток, которая указывается в протоколе испытаний вместе с температурой верхних слоев масла. В качестве источника используются аккумуляторные батареи необходимой емкости.

Для сравнения измеренных сопротивлений последние приводятся к одной температуре по формуле расчета. Для исключения ошибок, обусловленных индуктивностью обмоток, сопротивление нужно измерять только при полностью установившемся токе. Кроме того, для повышения точности измерений применяют схемы и выдерживают рекомендации, известные в практике измерений (в брошюре не рассматриваются). Оценку результатов производят путем сравнения полученных значений с данными измерений, полученными на заводе и приведенными в паспорте. Значения сопротивлений, полученные на соответствующих ответвлениях других фаз, не должны отличаться друг от друга более чем на 2 %, за исключением случаев, когда это оговорено паспортными данными или заводскими протоколами.

При измерении коэффициента трансформации выявляют неправильное подсоединение отводов устройств РПН и правильность установки привода устройств ПБВ, повреждения обмоток. Коэффициент трансформации измеряют с помощью специальных электрических схем (мостов) по способу компенсации или методом двух вольтметров, один из которых присоединяется к обмотке низшего, а другой - к обмотке высшего напряжения. Класс точности измерительных вольтметров должен быть не ниже 0,2.

Путем проверки группы соединения обмоток определяют тождественность группы соединения обмоток трансформаторов, предназначенных для параллельной работы. В трехфазных трансформаторах, имеющих две и более обмоток разных напряжений, каждая из обмоток может быть соединена по любой схеме. Комбинация схем соединений высшего напряжения и низшего называется группой соединения, характеризующей угловой сдвиг векторов линейного напряжения обмотки низшего напряжения относительно векторов линейного напряжения обмотки высшего напряжения. Поэтому при несоблюдении тождественности групп соединения между обмотками трансформаторов возникают уравнительные токи, значительно превосходящие номинальные токи трансформаторов. Эти уравнительные токи вызывают чрезмерные перегревы изоляции (интенсивное старение), что приводит к повреждению трансформатора.

Наиболее характерными недостатками, выявленными при проверке группы соединения обмоток, являются неправильно выполненная маркировка вводов трансформатора и неправильное подсоединение отводов обмоток к вводам.

Группы соединения обмоток проверяют одним из следующих способов: двумя вольтметрами, постоянным током, фазометром (прямой метод), с помощью специального моста - одновременно с измерением коэффициента трансформации (компенсационный метод).

Метод двух вольтметров основан на совмещении векторных диаграмм первичного и вторичного напряжений и измерении напряжения между соответствующими выводами с последующим сравнением этих значений с расчетными, приведенными в справочных таблицах.

Совмещение достигается соединением между собой одноименных выводов и а обмотки ВН и НН. Для исключения возможных ошибок при испытании трехфазных трансформаторов необходимо обращать внимание на симметрию трехфазного напряжения питания. Подачу напряжения допускается производить со стороны любой из обмоток. Метод применим для однофазных и трехфазных трансформаторов. Применяются также методы постоянного тока и фазометра.

Проверку электрической прочности изоляции производят в период монтажа и в дальнейшем в процессе эксплуатации согласно [3].

В момент приложения повышенного напряжения в изоляции трансформатора создается увеличенная напряженность поля, что способствует выявлению дефекта. Характерными недостатками, обнаруживаемыми при проверке изоляции, являются:

  • нарушение (сокращение) расстояния между гибкими неизолированными отводами обмоток НН в месте их подсоединения к шпильке ввода;

  • местные увлажнения и загрязнения (наличие посторонних предметов) изоляции, особенно на участках отводов НН;

  • наличие в трансформаторе воздушных пузырей и др.

Изоляцию обмоток вместе с вводами испытывают повышенным напряжением промышленной частоты в течение 1 мин, поочередно приложенным к каждой обмотке при заземленных на бак и закороченных остальных обмотках.

Мощность испытательного трансформатора зависит от зарядной мощности испытываемой обмотки и определяется ее емкостью и значением испытательного напряжения и выбирается из условия допустимости нагрева измерительного трансформатора емкостным током испытуемого объекта.

В зависимости от класса напряжения трансформаторы до 35 кВ испытываются без предварительного нагрева, т.е. в холодном состоянии.

При испытательных напряжениях, превышающих 100 кВ, или при испытании трансформаторов со значительной емкостью, которая может исказить коэффициент трансформации испытательного трансформатора, измерение испытательного напряжения производят на стороне ВН с помощью шаровых разрядников или измерительных трансформаторов. В процессе испытания дефекты в трансформаторе при пробое изоляции выявляют по характерному звуку, выделению газа и дыма, по результатам газохроматографического анализа масла, по показаниям приборов измерений частичных разрядов (электрическим или акустическим методом).

В эксплуатации после ремонта с полной или частичной заменой обмоток при наличии испытательных средств производят испытание внутренней изоляции обмоток (витковой, межкатушечной) трансформатора индуктированным напряжением повышенной или промышленной частоты. При испытании напряжение подводят к одной из обмоток, другие остаются разомкнутыми.

Измерение потерь и напряжения короткого замыкания производится в эксплуатации в целях определения и нормирования значений uк и Рк трансформаторов, прошедших ремонт с заменой обмоток. По значению uк с последующим расчетом сопротивления КЗ ZK можно выявлять повреждение обмоток (деформацию) и необходимость вывода трансформатора в ремонт.

Опыт КЗ проводят, как правило, при токе не менее 25 % номинального тока на номинальной ступени напряжения обмоток, а для трансформаторов с регулированием напряжения под нагрузкой - и на крайних положениях переключателя ответвлений.

Фазировку проводят перед включением трансформаторов на параллельную работу после монтажа или проведенного ремонта. Проверяют при этом допустимость параллельной работы как самих трансформаторов, так и трансформаторов с энергосистемой.

При фазировке поочередно производят измерение напряжений между фазой. подключаемого трансформатора и тремя фазами сети в целях отыскания совпадающих фаз, между которыми напряжение должно быть равно нулю. Для снижения опасности измерение обычно производят на стороне НН.

Для фазировки при вводе в работу используют два метода - прямой и косвенный:

  • при прямом методе фазировку производят непосредственно на находящейся под рабочим напряжением ошиновке трансформатора или на несвязанных с этой ошиновкой аппаратах, оборудовании;

  • при косвенном методе при фазировке используют трансформаторы напряжения, присоединенные к фазируемым частям электроустановки, и фазировку производят во вторичных цепях трансформаторов напряжения. Косвенный метод фазировки менее опасен, но более трудоемок.

Более подробно о методах фазировки изложено в [6]. Фазировка считается законченной в случае совпадения всех трех фаз (нулевые показания вольтметра).

Методы испытаний трансформаторного масла. Масло в силовых трансформаторах, особенно мощных, находится под периодическим контролем. При комплексном обследовании трансформатора состояние масла определяет его работоспособность.

Свежее трансформаторное масло имеет светло-желтый или светлый цвет и определенные нормируемые показатели, определяющие физико-химические и диэлектрические свойства.

Стабильность масла (сохранение начальных свойств) в действующих трансформаторах с течением времени постепенно снижается. Если в начале эксплуатации изменение свойств масла почти не обнаруживается (при отсутствии дефекта в трансформаторе), то в дальнейшем значительное снижение стабильности приводит к изменениям, видимым при простом осмотре, - масло заметно мутнеет. Масло с ухудшенными показателями имеет увеличенное кислотное число и зольность, в нем появляются нежелательные компоненты (низкомолекулярные кислоты), которые в свою очередь ухудшают свойства бумажной изоляции и взаимодействуют с металлами. В таком масле появляются осадки, которые еще интенсивнее ухудшают изоляционные характеристики трансформатора. Поэтому важно своевременное определение восприимчивости масла к старению. В гл. 4 приведены предельно допустимые показатели физико-химических и диэлектрических свойств как вновь заливаемого, так и эксплуатационного трансформаторного масла.

Электрическая прочность является одной из основных характеристик масла, которая определяется по пробивному напряжению. Испытания проводятся в стандартном разряднике, представляющем собой два плоских или сферических электрода диаметром 25 мм, расположенных взаимно параллельное фарфоровой ванночке на расстоянии 2,5 мм друг от друга. Для испытаний можно использовать аппараты АИИ-70, АИМ-80 либо другого типа.

Для свежего масла пробивное напряжение должно быть не менее 30 кВ. Масло с таким пробивным напряжением может быть залито в ряд трансформаторов без специальной подготовки. Для трансформаторов 35 кВ и выше требования более жесткие (см. табл. 2 в гл. 4).

Снижение пробивного напряжения свидетельствует, как правило, о загрязнении масла водой, воздухом, волокнами и другими примесями. Практически любое повреждение в трансформаторе со временем приводит к снижению пробивного напряжения масла.

Тангенс угла диэлектрических потерь масла (tg д масла) характеризует свойства трансформаторного масла как диэлектрика. Диэлектрические потери для свежего масла характеризуют его качество и степень очистки, а в эксплуатации - степень загрязнения и старения масла. Ухудшение диэлектрических свойств (увеличение tg д) приводит к снижению изоляционных характеристик трансформатора в целом.

Для определения tg д масло заливают в специальный сосуд с цилиндрическими или плоскими электродами. Измерение производят с применением моста переменного тока Р525 или Р5026, а также другого типа.

Изготовитель трансформаторного масла нормирует tg д при температуре 90 °С. Однако в [5] tg д в эксплуатации нормирован при 20 и 70 °С. Для комплексной оценки состояния трансформатора и его узлов в эксплуатации tg д целесообразно измерять при всех трех температурах, т.е. при 20, 70 и 90 °С.

Пробивное напряжение и тангенс угла диэлектрических потерь определяют в электротехнической лаборатории. Они не всесторонне характеризуют степень годности и степень старения масла. Поэтому в химической лаборатории проверяют дополнительно ряд физико-химических показателей трансформаторного масла. В их числе следующие.

Цвет масла у большинства масел светло-желтый. У высококачественных масел, изготовляемых в настоящее время (марки ГК или Т-1500), цвет светлый.

В эксплуатации под влиянием ряда факторов (в частности, нагрева, загрязнений, электрического поля) из-за образующихся смол и осадков масло темнеет. Темный цвет свежего масла характеризует отклонения в технологии изготовления масла на заводе-изготовителе. Показатель цвета масла служит для ориентировочной оценки его качества, как в отечественной, так и в зарубежной практике.

Механические примеси - нерастворенные вещества, содержащиеся в масле в виде осадка или во взвешенном состоянии. Волокна, пыль, продукты растворения в масле компонентов, применяемых в конструкции трансформатора (краски, лаки и т.п.), просматриваются на просвет в стеклянном сосуде после предварительного встряхивания. Другие примеси появляются в масле после внутренних повреждений (электрической дуги, мест перегревов) в виде обуглившихся частиц. При очень сильном загрязнении масло подлежит восстановлению или замене.

По мере старения в масле появляются осадки (шлам), которые, осаждаясь на изоляции, ухудшают ее изоляционные свойства.

Примеси у большинства трансформаторов проверяют на просвет визуально. Если они не обнаруживаются, то считается, что их количество не превышает 50 г на 1 т масла. У особо ответственных трансформаторов (более 750 кВ) предельно нормируемое количество примесей составляет 5-15 г/т. Такое количество примесей можно фиксировать только с применением более точных методов контроля, например, некоторое количество масла пропускается через фильтр, который взвешивается до и после прокачки масла; разность массы показывает количество осадка.

Влагосодержание как показатель состояния масла тщательно контролируется в эксплуатации. Ухудшение этого показателя свидетельствует о потере герметичности трансформатора или о работе в недопустимом нагрузочном режиме (интенсивное старение изоляции под воздействием значительных температур).

Влагосодержание определяется по количеству водорода, выделяющегося при взаимодействии масла с гидридом кальция за определенное время.

Температура вспышки масла характеризует степень испаряемости масла. В эксплуатации она постепенно увеличивается за счет улетучивания легких фракций (низкокипящих). Температура вспышки для обычных товарных масел колеблется в пределах 130-150 °С, а для арктического масла - от 90 до 115 °С и зависит от упругости их насыщенных паров. Чем ниже упругость паров, чем выше температура вспышки, тем лучше можно дегазировать и осушать масло перед заливкой в трансформаторы. Минимальная температура вспышки масла установлена не столько по противопожарным соображениям (хотя это также является важным фактором), сколько с точки зрения возможности глубокой их дегазации. В отношении пожарной безопасности большую роль играет температура самовоспламенения - это температура, при которой масло при наличии воздуха над поверхностью загорается самопроизвольно без поднесения пламени, у трансформаторных масел эта температура равна примерно 350-400 °С.

Из-за испарения легких фракций ухудшается состав масла, растет вязкость, образуются взрывоопасные и другие газы. При разложении масла под воздействием высоких температур (электрической дуги) его температура вспышки резко снижается.

Для определения температуры вспышки масло заливается в закрытый сосуд (тигль) и нагревается. Выделяемые пары масла, смешиваясь с воздухом, образуют смесь, которая вспыхивает при поднесении к ней пламени или под воздействием электрической дуги.

Кислотное число масла - это количество едкого кали (КОН), выраженного в миллиграммах, которое необходимо для нейтрализации свободных кислот в 1 г масла. Этот показатель характеризует степень старения масла, вызванного содержанием в нем кислых соединений. Он служит для предупреждения появления в масле продуктов глубокого окисления в действующем оборудовании (осадки, нерастворимые в масле). Кислотное число не должно превышать 0,25 мг КОН на 1 г масла.

Водорастворимые кислоты и щелочи, содержащиеся в масле, свидетельствуют о низком качестве масла. Они могут образовываться в процессе изготовления масла при нарушении технологии производства, а также в эксплуатации в результате окисления масел. Эти кислоты вызывают коррозию металла и способствуют старению твердой изоляции.

Для обнаружения кислот применяется 0,02 %-ный водный раствор метилоранжа, а для обнаружения щелочи и мыл -1 %-ный спиртовой раствор фенолфталеина, которые меняют свой цвет в присутствии нежелательных компонентов. При наличии водорастворимых кислот и щелочей производится регенерация масла.

Стабильность масла проверяется в эксплуатации при получении партий свежего масла путем проведения его искусственного старения (окисления) в специальных аппаратах. Не всегда свежее, вновь прибывшее масло соответствует действующим нормам. Масло с неудовлетворительными характеристиками должно возвращаться заводу-изготовителю. Стабильность масла характеризует долголетие масла, определяет срок его службы и выражается двумя показателями - процентным содержанием осадка и кислотным числом.

Натровая проба характеризует степень отмывки масла от посторонних примесей. Этот показатель также используется лишь для свежего масла и в эксплуатации не проверяется.

Температура застывания проверяется для масла трансформаторов, работающих в северных районах. Эта наибольшая температура, при которой масло застывает настолько, что при наклоне пробирки под углом 45° его уровень в течение 1 мин остается неизменным. Недопустимое повышение вязкости масла из-за снижения температуры окружающего воздуха может стать причиной повреждения подвижных элементов конструкции трансформатора (маслонасосы, РПН), а также ухудшает теплообмен, что приводит к перегреву и старению изоляции (особенно витковой) токоведущих частей трансформатора.

Газосодержание масла в мощных герметичных трансформаторах должно соответствовать нормам. Измерение этого показателя производится абсорбиометром. Возможно также измерение суммарного газосодержания с помощью хроматографа. Косвенно по этому показателю определяется герметичность трансформатора. Повышение содержания газа (в том числе воздуха) в масле приводит к ухудшению его свойств - возрастает интенсивность окисления масла кислородом воздуха, и, кроме того, несколько снижается электрическая прочность изоляции активной части трансформатора.

Для всестороннего изучения свойств свежего масла используют и другие показатели, которые здесь не рассматриваются.
1   ...   4   5   6   7   8   9   10   11   ...   16

Похожие:

Обслуживание силовых трансформаторов Предисловие icon Учебного курса, содержание лекции
Проверка силовых трансформаторов перед включением в работу Способы сушки изоляции трансформаторов
Обслуживание силовых трансформаторов Предисловие icon Типовая технологическая карта монтаж силовых трансформаторов с естественным...
Елены инструкцией "Транспортирование, хранение, монтаж и ввод в эксплуатацию силовых трансформаторов напряжением до 35 кВ включительно...
Обслуживание силовых трансформаторов Предисловие icon Тепловизионный контроль силовых трансформаторов и высоковольтных вводов
Тепловизионный контроль силовых трансформаторов и высоковольтных вводов. Методические указания. 2000г с. 12
Обслуживание силовых трансформаторов Предисловие icon 1. Прибор для измерения параметров силовых трансформаторов "Коэффициент"
Предмет закупки Прибор для измерения параметров силовых трансформаторов Коэффициент
Обслуживание силовых трансформаторов Предисловие icon Техническое задание на ремонт силовых трансформаторов 110/35кВ со...
Капитальный ремонт трансформаторов тдн-16000/110/6 с приобретением нового привода мз-2 и его монтажом, тмт-6300/110/35/10, тмн-2500/110/35/,...
Обслуживание силовых трансформаторов Предисловие icon Техническое описание и инструкция по эксплуатации -1
Установка типа им-65 (в дальнейшем по тексту- установка) предназначена для испытания выпрямленным напряжением изоляции силовых кабелей,...
Обслуживание силовых трансформаторов Предисловие icon «Техническое обследование состояния силовых трансформаторов 35-110...
Участники подавать свои предложения на право заключения договора возмездного оказания услуг: «Техническое обследование состояния...
Обслуживание силовых трансформаторов Предисловие icon Техническое задание на проведение конкурентной процедуры по поставке...
Один прибор «виток-омметр» (с комбинированным питанием), один измеритель параметров изоляции «Тангенс-2000», один прибор для измерения...
Обслуживание силовых трансформаторов Предисловие icon 1. Общие положения
Запрос предложений на право заключения договора на поставку трансформаторов силовых масляных
Обслуживание силовых трансформаторов Предисловие icon Исследование силовых трансформаторов при несинусоидальных режимах
Прогнозирование удельных норм расхода электроэнергии на нефтехимических предприятиях
Обслуживание силовых трансформаторов Предисловие icon А. А. Даутов Начальник отдела по экономической безопасности
Восстановление работоспособности силовых трансформаторов тдн-10000/110-У1 нпс-21 "Сковородино"
Обслуживание силовых трансформаторов Предисловие icon Общие сведения
Полное наименование – техническое задание на поставку силовых трансформаторов тмг12 (этз им. Козлова) или эквивалент
Обслуживание силовых трансформаторов Предисловие icon Методические указания по проведению испытаний силовых трансформаторов
Парижское управление Федеральной службы по экологическому, технологическому и атомному надзору
Обслуживание силовых трансформаторов Предисловие icon Выбор и эксплуатация силовых трансформаторов
«Электрооборудование и электрохозяйство предприятии организации и учреждении» направления 654500 «Электротехника электромеханика...
Обслуживание силовых трансформаторов Предисловие icon 1. Методы диагностирования силовых трансформаторов тяговых подстанций
Автоматизированная система измерения температурой зависимости тангенса угла диэлектрических потерь трансформаторного масла
Обслуживание силовых трансформаторов Предисловие icon Укажите правильный порядок включения на параллельную работу силового трансформатора напряжения?
Какое количество силовых трансформаторов должно применяться в составе судовой электроэнергетической системе?

Руководство, инструкция по применению




При копировании материала укажите ссылку © 2024
контакты
rykovodstvo.ru
Поиск