Скачать 2.44 Mb.
|
Магнитная дефектоскопия, магнитопорошковый метод Магнитная дефектоскопия — это частный случай магнитного неразрушающего контроля, предусматривающий способ обнаружения дефектов в виде нарушения сплошности в объектах из ферромагнитных материалов. Сущность способа — регистрация магнитных полей рассеяния вблизи этих дефектов. При помещении в однородное магнитное поле объекта контроля, не имеющего дефектов и резкого изменения формы, магнитный поток будет проходить по пути наименьшего сопротивления через материал, практически не выходя за пределы объекта. Некоторая незначительная часть магнитного потока может проходить по воздуху. Это связано с тем, что магнитное сопротивление материала (металла) много меньше сопротивления воздуха, поскольку оно обратно пропорционально магнитной проницаемости. При наличии трещины, перпендикулярной направлению магнитного потока, возникает препятствие в виде воздушного промежутка, резко увеличивающего магнитное сопротивление на этом участке. Поэтому поток будет в основном огибать трещину снизу. Вместе с тем часть потока будет замыкаться в воздух над трещиной, т.е. появляется поток рассеяния над дефектом ДФД. В материале с очень большой магнитной проницаемостью и малым магнитным сопротивлением весь магнитный поток пойдет под трещиной и потока ДФД практически не будет. Это означает весьма низкую чувствительность магнитной дефектоскопии при контроле таких материалов. Правильный выбор оптимальных режимов намагничивания усиливает поток рассеяния АФД над дефектом и повышает чувствительность метода. Дефекты оптимально обнаруживаются в случае, когда направление намагничивания контролируемой детали перпендикулярно направлению дефекта. Для создания оптимальных условий контроля применяют три вида намагничивания: - циркулярное; - продольное (полюсное); - комбинированное. Циркулярное намагничивание предназначено для деталей, имеющих форму тел вращения (при этом что-то вращается: деталь или магнитный поток). Продольное (полюсное) намагничивание осуществляется с помощью электромагнитов, постоянных магнитов или соленоидов. При этом деталь намагничивается обычно вдоль своего наибольшего размера. На ее краях образуются полюсы, создающие поле обратного направления. Комбинированное намагничивание осуществляется при одновременном намагничивании детали двумя или несколькими изменяющимися магнитными полями. Различают магнитомягкие и магнитожесткие материалы. Магнитомягкие размагничиваются при убирании поля, магнитожесткие остаются намагниченными при удалении поля (закаленная сталь). Намагниченные детали из магнитожестких материалов после проведения контроля должны быть размагничены во избежание налипания на них металлических стружек и опилок, которые в последующем могут попасть в подшипники, направляющие, зубчатые передачи и другие узлы и вывести их из строя. Качество размагничивания можно проверить с помощью магнитометра или магнитной стрелки. Для магнитопорошкового контроля в основном применяют дефектоскопы трех видов: • стационарные универсальные; • передвижные и переносные универсальные; • специализированные (стационарные, передвижные, переносные). Дефектоскопия стальных канатов Подъемные устройства различных типов применяют на большинстве объектов промышленности в качестве основного и вспомогательного оборудования. Основным видом гибких грузовых элементов подъемных устройств являются стальные канаты. Магнитный неразрушающий контроль в последние годы все более широко начинает применяться для дефектоскопии таких канатов, изготовленных из ферромагнитных материалов. Та же аппаратура может быть использована и для контроля длинных стержневых деталей, например таких, как штанги глубинных насосов. Принцип магнитной дефектоскопии основан на оценке магнитного потока вдоль участка каната и регистрации изменений в его распределении. Эти изменения могут быть обусловлены рядом причин: изменением площади поперечного сечения каната, наличием обрывов проволок, изменением магнитных свойств материала проволок, приводящего к изменению структуры металла. Дефектоскопию стальных канатов осуществляют с использованием переменного или постоянного магнитного поля. При использовании переменного магнитного поля магнитный поток вдоль продольной оси участка контролируемого каната создают посредством возбуждающей индуктивной катушки с переменным током, охватывающей канат. Измерительная катушка также охватывает канат, и в ней индуцируется ЭДС, зависящая от площади поперечного сечения каната по металлу. Метод переменного магнитного поля используют, как правило, только для измерения потери сечения каната. Метод постоянного магнитного поля используют как для измерения потери сечения каната, так и для обнаружения локальных дефектов. Постоянный магнитный поток вдоль продольной оси участка контролируемого каната создают постоянными магнитами или электромагнитами постоянного тока. Общий магнитный поток, создаваемый постоянными магнитами или электромагнитом (часть этого потока), измеряют датчиками Холла либо другими датчиками, пригодными для измерения абсолютного значения магнитного потока или изменений этого потока. Сигнал датчиков зависит от магнитного потока, проходящего через участок контролируемого каната и, следовательно, от поперечного сечения этого участка по металлу. Локальные дефекты каната, например обрывы проволок, создают вблизи дефектов магнитные потоки рассеяния, которые регистрируются датчиками Холла, катушками или другими магниточувствительными элементами. Сигналы датчиков зависят не только от размеров локальных дефектов, но и от их типа и положения, поэтому определить количественно параметры дефектов обычно затруднительно. Качественный анализ полученной информации о локальных дефектах выполняют по дефектограммам на основании накопленного опыта. Магнитная структуроскопия Все изменения в структуре материала в процессе его изготовления, обработки, зарождения и развития повреждений отражаются в соответствующих изменениях магнитных и электрофизических параметров. Появление этих изменений объясняется разворотом и перемещением доменов и междоменных границ, составляющих в совокупности доменную структуру материала. В основу методов магнитной структуроскопии положена корреляция между некоторыми магнитными и физико-механическими свойствами материалов, когда они одновременно зависят от одних и тех же факторов: химического состава, режима термообработки, напряженного состояния, накопления усталостных повреждений и др. По использованным магнитным информативным параметрам различают следующие разновидности магнитной структуроскопии: - ферритометрия; - коэрцитиметрия; - контроль по остаточной намагниченности; - контроль по магнитной проницаемости; - контроль по магнитным шумам. Наибольшее распространение нашли две первые разновидности магнитной структуроскопии. Ферритометрия применяется для контроля ферритной фазы, повышенное содержание которой снижает трещиностойкость сталей и особенно сварных соединений. Содержание этой фазы определяет магнитную проницаемость материала, поэтому для ее определения измеряют магнитное сопротивление. Измерительным элементом ферритометра является одно- или двухполюсный феррозондовый магнитный преобразователь, содержащий возбуждающую и измери¬тельную катушки. Магнитный поток, создаваемый возбуждающей катушкой феррозонда, зависит от магнитного сопротивления участка объекта контроля, определяемого содержанием ферритной фазы. Поэтому ее величину оценивают по ЭДС, наведенной при этом в измерительной катушке. Градуировка ферритометров производится по эталонным образцам с известным содержанием ферритной фазы. Большую погрешность при измерении может внести изменение зазора между преобразователем и поверхностью объекта контроля, а так же геометрия этой поверхности (край, кривизна). Коэрцитиметрия Наиболее широко в структуроскопии используется зависимость между твердостью углеродистых и низколегированных сталей и их коэрцитивной силой (коэрцитивная сила (от лат. соёrcitio — удерживание), одна из характеристик явления гистерезиса; определяется факторами, препятствующими перемагничиванию образца. Наличие в образцах примесей, дефектов кристаллической решётки, различного рода неоднородностей затрудняет движение границ магнитных доменов). Твердость в свою очередь определяется температурой закалки и отпуска, что позволяет использовать коэрцитивную силу для контроля режимов термообработки стали. В последние годы коэрцитиметрия стала широко применяться для контроля напряженного состояния металлоконструкций опасных производственных объектов различного назначения, что является весьма актуальным для технической диагностики. Поскольку позволяет методически и приборно, быстро, просто и дешево выявить и оценить качественно и количественно изменения напряженно-деформированного и усталостного состояния. Этим обеспечивается полнота исходных данных диагностики. Измерения выполняют без зачистки и контактной жидкости, прямо через защитное покрытие толщиной до 5-6 мм. Ничто, кроме усталостных изменений в металле, не заставит хороший коэрцитиметр показать недопустимые значения в данной зоне контроля. В зонах концентрации напряжений накопление усталостной микроповрежденности происходит ускоренно, с опережением. При достижении поврежденности определенного (своего у каждой марки металла) уровня имеет смысл выполнять уже и дефектоскопию металла. До этого момента усталостных дефектов в металле нет. Такой прицельный и избирательный подход уменьшает объемы и стоимость диагностики, а ее достоверность улучшает. Размеры зон-концентраторов существенно больше размеров неизбежно возникающих в них усталостных дефектов, местоположение таких зон не случайно, а предопределено логикой конструкции и распределения приложенных нагрузок. Поэтому усталостные зоны, как большие и логично расположенные, выявляются много проще, чем дефекты металла, распределенные в них достаточно случайным образом. При обследовании коэрцитиметрия без ущерба для информативности может выполняться не всплошную, а дискретно, с шагом от 1 см до метров. Для уточнения границ зоны деградации и ее максимума уменьшают шаг измерений, вплоть до 1мм. Шаг выбирается не произвольно и всегда соответствует задаче и состоянию металла. Если измерения коэрцитивной силы выполнить первыми, как обзорные, то оперативно получаем общее представление о реальном текущем состоянии всего объекта. Здесь сразу хорошо видны зоны концентрации напряжений и степень деградации металла в них. Это дает возможность обоснованно привлекать–не привлекать другие методы контроля металла в зависимости от реального усталостного состояния, включая и дефектоскопию во всех ее разновидностях, но уже в точно очерченных местах и объемах. Численная коэрцитиметрическая оценка деградации металла превращает до сих пор гипотетический усталостный контроль в проверяемую, ответственную процедуру с точными количественными критериями степени усталости и ресурса металла. Это дает возможность использовать богатейший аппарат статистических методов и оценок, что заметно снижает субъективизм и улучшает наглядность отображения результатов, а диагностика становится количественно измеряемой, упреждающей и объективно-прогнозирующей, с пополняемым банком данных усталости объекта и всех его элементов. Количественная оценка усталостного состояния металла позволяет формировать интегральную численную характеристику состояния всего объекта, как взвешенную сумму таких же коэрцитиметрических чисел-показателей усталости составляющих его узлов или конструкционных элементов. Здесь хорошо видна сравнительная и абсолютная степень износа оборудования, качество его эксплуатации. На такой основе можно принимать обоснованные решения об очередности, целесообразности и объемах ремонта, не вслепую, а по состоянию металла, точно в пределах его недопустимой усталостной поврежденности, а не простой заваркой выявленных трещин. Формируется наиболее эффективная эксплуатационная стратегия отрасли, предприятия, цеха, объекта, обеспечивающая максимальную отдачу оборудования при минимальных затратах. Очень продуктивно взаимно дополняющее сочетание коэрцитиметрии и толщинометрии в диагностике металлов. Коэрцитиметры Коэрцитиметр, прибор для измерения коэрцитивной силы ферромагнитных материалов. Наиболее распространены К. для измерения коэрцитивной силы по намагниченности JHC, или HC. Это объясняется простотой методики измерений и, кроме того, для материалов с HC < 500 а/см значения коэрцитивной силы, определяемые по индукции и намагниченности, мало отличаются друг от друга. При измерении HC испытываемый образец сначала намагничивают практически до насыщения в электромагните или в намагничивающей катушке К. Затем через эту катушку с помещенным в неё образцом пропускают постоянный ток, магнитное поле которого размагничивает образец. Ток увеличивают до тех пор, пока намагниченность J образца не уменьшится до нуля, что регистрируется различного рода индикаторами (нулевыми приборами). По току в катушке К., соответствующему состоянию образца с J = 0, определяют напряжённость размагничивающего поля, т. е. HC. Для этого предварительно устанавливается зависимость напряжённости Н магнитного поля, создаваемого катушкой, от силы протекающего по её обмотке тока. Часто амперметр в цепи намагничивающей катушки имеет шкалу, проградуированную непосредственно в единицах напряжённости поля. К. отличаются друг от друга в основном способом определения равенства нулю намагниченности образца. Кроме указанных типов К., распространены К. с датчиками Холла (измеряющими напряжённость магнитного поля); К. с измерительной катушкой, подключенной к баллистическому гальванометру и сдёргиваемой с образца при определении в нём остаточной намагниченности; вибрационные К., у которых нульиндикатором служит колеблющаяся измерительная катушка, и т. д. Для измерения коэрцитивной силы образца по индукции (BHC) его делают частью замкнутой магнитной цепи пермеаметра, электромагнита или т. н. приставного К. (упрощённого пермеаметра, служащего для определения одной точки петли гистерезиса — BHC). Значение BHC соответствует напряжённости размагничивающего поля, при которой индукция В в образце равна нулю. Рис.6.5. . Коэрцитиметр КРМ-Ц Рис.6.6. Коэрцитиметр КИМ-2М Рентгеновский контроль Рентгеновский контроль (рентгенодефектоскопия или рентгеновская дефектоскопия) чаще всего применяется и является незаменимым в электронной и электротехнической промышленности. Рентгеновский контроль основан на поглощении рентгеновских лучей, которое зависит от плотности среды и атомного номера элементов, образующих материал среды. Наличие таких дефектов, как трещины, раковины или включения инородного материала, приводит к тому, что проходящие через материал лучи ослабляются в различной степени. Регистрируя распределение интенсивности проходящих лучей, можно определить наличие и расположение различных неоднородностей материала. Рентгеновский контроль применяют для определения раковин, грубых трещин, ликвационных включений в литых и сварных стальных изделиях толщиной до 80 мм и в изделиях из лёгких сплавов толщиной до 250 мм. Для этого используют промышленные рентгеновские установки с энергией излучения от 5-10 до 200-400 кэв (1 эв = 1,60210 110-19 дж). Изделия большой толщины (до 500 мм) просвечивают сверхжёстким электромагнитным излучением с энергией в десятки Мэв, получаемым в бетатроне. Преимуществами рентгеновского контроля являются обнаружение и точная локализация дефектов, высокое покрытие технологических дефектов, а также отсутствие контактного приспособления являются основными преимуществами рентгеновского контроля. |
Учебно-методический комплекс дисциплины «Торговое оборудование» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
Учебно-методический комплекс дисциплины «организационное поведение» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
||
Учебно-методический комплекс дисциплины «Русский язык и культура речи» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
Учебно-методический комплекс дисциплины «Системное программное обеспечение» Учебно-методический комплекс дисциплины составлен на основании требований государственного образовательного стандарта высшего профессионального... |
||
Учебно-методический комплекс дисциплины Учебно-методический комплекс дисциплины составлен на основании государственного образовательного стандарта высшего профессионального... |
Учебно-методический комплекс дисциплины Учебно-методический комплекс дисциплины составлен на основании государственного образовательного стандарта высшего профессионального... |
||
Учебно-методический комплекс дисциплины обсужден на заседании кафедры... Учебно-методический комплекс дисциплины составлен на основании требований государственного образовательного стандарта высшего профессионального... |
Учебно-методический комплекс дисциплины архитектура ЭВМ 090104. 65... Учебно-методический комплекс дисциплины составлен на основании требований государственного образовательного стандарта высшего профессионального... |
||
Учебно-методический комплекс дисциплины «коммерческое право» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
Учебно-методический комплекс дисциплины «римское право» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
||
Учебно-методический комплекс дисциплины «Таможенное право» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
Учебно-методический комплекс дисциплины «иностранный язык по специальности» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
||
Учебно-методический комплекс дисциплины «Технология формирования имиджа» Учебно-методический комплекс дисциплины составлен на основании требований государственного образовательного стандарта высшего профессионального... |
Учебно-методический комплекс дисциплины «право интеллектуальной собственности» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
||
Учебно-методический комплекс дисциплины «защита прав потребителей» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
Учебно-методический комплекс дисциплины «Рекламное дело» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
Поиск |