Скачать 1.98 Mb.
|
Контрольные вопросы:
Лабораторная работа 7 Защита от теплового излучения Цель работы: Ознакомить с теорией теплового излучения, физической сущности и расчетом теплоизоляции, с приборами для измерения тепловых потоков, нормативными требованиями к тепловому излучению, провести измерения интенсивности тепловых излучений в зависимости от расстояния до источника и оценить эффективность защиты от инфракрасных излучений с помощью экранов и воздушной завесы. Общие сведения: Лучистый теплообмен между телами представляет собой процесс распространения внутренней энергии, которая излучается нагретыми телами в виде электромагнитных волн в видимой и инфракрасной (ИК) области спектра. Длина волны видимого излучения – от 0,38 до 0,77 мкм, инфракрасного – более 0,77 мкм. Такое излучение называется тепловым (воспринимается человеком в виде тепла и имеет длину волн = 0,78 - 1000 мкм) или лучистым излучением. Воздух прозрачен (диатермичен) для теплового излучения, поэтому при прохождении лучистого тепла через воздух температура его не повышается. Тепловые лучи поглощаются предметами, нагревают их и они становятся излучателями тепла. Воздух, соприкасаясь с нагретыми телами, также нагревается и температура воздушной среды в производственных помещениях возрастает. Интенсивность обмена тепловым излучением может быть определена по формуле Стефана - Больцмана: (1) где - интенсивность обмена тепловым излучением, Вт/м2; - площадь излучающей поверхности, м2 (ориентировочно – 1,8 м2); - температура излучающей поверхности, К; - расстояние от излучающей поверхности, м. Из формулы (1) следует, что количество лучистой теплоты, поглощаемого телом человека, зависит от температуры источника излучения, площади излучающей поверхности и квадрата расстояния между излучающей поверхностью и телом человека. Тепловой обмен организма человека с окружающей средой заключается во взаимосвязи между образованием тепла (термогенезом) в результате жизнедеятельности организма и отдачей им этого тепла во внешнюю среду. Отдача теплоты осуществляется, в основном, тремя способами: конвекцией, излучением и испарением. Передача теплоты ИК излучением является наиболее эффективным способом теплоотдачи и составляет в комфортных метеоусловиях 44 – 59% общей теплоотдачи. Тело человека излучает в диапазоне длин волн от 5 до 25 мкм с максимумом энергии на длине волны max = 9,3 мкм согласно закону Вина: где С = 2880 мкм*К – постоянная величина, Т = 273,16 + tС – температура в К (Кельвин); tС = 36,6С – температура тела человека в С (Цельсий). В производственных условиях, когда работающий человек окружен предметами, имеющими температуру, отличную от температуры тела человека, соотношение способов теплоотдачи может существенно изменяться. Отдача человеческим телом теплоты во внешнюю среду возможна лишь тогда, когда температура окружающих предметов ниже температуры тела человека. В обратном случае, направление потока лучистой энергии меняется на противоположное, и уже тело человека будет получать извне дополнительную тепловую энергию. Воздействие ИК лучей приводит к перегреву организма и тем быстрее, чем больше мощность излучения, выше температура и влажность воздуха в рабочем помещении, выше интенсивность выполняемой работы. ИК – излучение, помимо усиления теплового воздействия окружающей среды на организм работающего, обладает специфическим влиянием. С гигиенической точки зрения важной особенностью ИК – излучения является его способность проникать в живую ткань на разную глубину. Лучи длинноволнового диапазона (от 3мкм до 1мм) задерживаются в поверхностных слоях кожи уже на глубине 0,1 – 0,2 мм. По этому их физиологическое воздействие на организм проявляется, главным образом, в повышении температуры кожи и перегреве организма. Лучи коротковолнового диапазона (от 0,78 до 1,4мкм) обладают способностью проникать в ткани человеческого организма на несколько сантиметров. Такое ИК - излучение легко проникает через кожу и черепную коробку в мозговую ткань и может воздействовать на клетки головного мозга, вызывая его тяжелые поражения. В частности, ИК - излучение может привести к возникновению специфического заболевания – теплового удара, проявляющегося в головной боли, головокружении, учащении пульса, ускорении дыхания, падении сердечной деятельности, потере сознания и др. При облучении коротковолновыми ИК - лучами наблюдается повышение температуры легких, почек, мышц, и других органов. В крови, лимфе, спинномозговой жидкости появляются активные специфические биологические вещества, наблюдаются нарушения обменных процессов, изменяются функциональное состояние центральной нервной системы. Интенсивность теплового облучения человека регламентируется, исходя из субъективного ощущения человеком энергии облучения. Согласно ГОСТ 12.1.005-88 интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов не должна превышать: 35 Вт/м2 при облучении более 50% поверхности тела; 70 Вт/м2 при облучении от 25 до 50% поверхности тела; 100 Вт/м2 – при облучении не более 25% поверхности тела. От открытых источников (нагретые металл и стекло, открытое пламя) интенсивность теплового облучения не должна превышать 140 Вт/м2 при облучении не более 25% поверхности тела и обязательном использовании средств индивидуальной защиты, в том числе средств защиты лица и глаз. Нормы ограничивают также температуру нагретых поверхностей оборудования в рабочей зоне, которая не должна превышать 45С, а для оборудования, внутри которого температура близка к 100С, температура на его поверхности должна быть не выше 35С. В производственных условиях не всегда возможно выполнить нормативные требования. В этом случае должны быть предусмотрены мероприятия по защите работающих от возможного перегрева: дистанционное управление ходом технологического процесса; воздушное или водо-воздушное душирование рабочих мест; устройство специально оборудованных комнат, кабин или рабочих мест для кратковременного отдыха с подачей в них кондиционированного воздуха; использование защитных экранов, водяных и воздушных завес; применение средств индивидуальной защиты; спецодежды, спецобуви и др. Одним из самых распространенных способов борьбы с тепловым излучением является экранирование излучающих поверхностей. Различают экраны трех типов: непрозрачные, прозрачные и полупрозрачные. В непрозрачных экранах поглощаемая энергия электромагнитных колебаний, взаимодействуя с веществом экрана, превращается в тепловую энергию. При этом экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника. К непрозрачным экранам относятся, например металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит, пемза), асбестовые и др. В прозрачных экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Так ведут себя экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы. Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой. По принципу действия экраны подразделяются на теплоотражающие, теплопоглощающие и теплоотводящие. Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить теплоты. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее. Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску. Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату. В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др. Оценить эффективность защиты от теплового излучения с помощью экранов можно по формуле: (2) где - интенсивность теплового излучения без применения защиты, Вт/м2; - интенсивность теплового излучения с применением защиты, Вт/м2. При устройстве общеобменной вентиляции, предназначенной для удаления избытка явного тепла, объем приточного воздуха Lпр(м3/ч) определяют по формуле: (3) где - избыток явного тепла, кДж/ч; - температура удаляемого воздуха, С; - температура приточного воздуха, С; - плотность приточного воздуха, кг/м3; - удельная теплоемкость воздуха, кДж/кг град. Температуру воздуха, удаляемого из помещения, определяют по формуле: (4) где - температура в рабочей зоне, которая не должна превышать установленную санитарными нормами, С; - температурный градиент по высоте помещения, С/м; (обычно 0,5 – 1,5 С/м); - расстояние от пола до центра вытяжных проемов, м; - высота рабочей зоны, м. Если количество образующихся тепловыделений незначительно или не может быть точно определено, то общеобменную вентиляцию рассчитывают по кратности воздухообмена n, которая показывает, сколько раз в течении часа происходит смена воздуха в помещении (обычно n находится в пределах от 1 до 10, причем для помещений небольшого объема используются более высокие значения n). Для удаления воздуха из помещения здание обычно оборудуются так называемыми фонарями. Местную приточную вентиляцию широко используют для создания требуемых параметров микроклимата в ограниченном объеме, в частности, непосредственно на рабочем месте. Это достигается созданием воздушных оазисов, воздушных завес и воздушных душей. Воздушный оазис создают в отдельных зонах рабочих помещений с высокой температурой. Для этого небольшую рабочую площадь закрывают легкими переносными перегородками высотой 2 метра и в огороженное пространства подают прохладный воздух со скоростью 0,2 – 0,4 м/с. Воздушные завесы создают для предупреждения проникновения в помещение наружного холодного воздуха путем подачи более теплого воздуха с большой скоростью (10 – 15 м/с) под некоторым углом навстречу холодному потоку. Воздушные души применяют в горячих цехах на рабочих местах, находящихся под воздействием лучистого потока теплоты большой интенсивности (более 350 Вт/м2). Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае у рабочего возникают неприятные ощущения (например, шум в ушах). Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ). Содержание работы. Описание стенда: Стенд представляет собой стол со столешницей 1, на которой размещаются бытовой электрокамин 2, индикаторный блок 3, линейка 4, стойки 5 для установки сменных экранов 6, стоика 7 для установки измерительной головки 8 измерителя тепловых потоков. Стол выполнен в виде металлического сварного каркаса со столешницей и полкой, на которой хранится сменные экраны 6. Бытовой электрокамин 2 используется в качестве источника теплового излучения. Бытовой пылесос 9 используется для создания вытяжной вентиляции, воздушного душа или воздушной завесы и устанавливается под столом стенда. Стойки 5 для установки сменных защитных экранов 6 обеспечивают их оперативную установку и замену. Измерительная головка 8 с помощью винтов крепится к вертикальной стойке 7, которая закреплена на плоском основании 10. Вся эта конструкция может вручную перемещаться по столешнице вдоль линейки 4. Стандартная металлическая линейка 4 предназначена для измерения расстояния от источника теплового излучения (электрокамина 2) до измерительной головки 8 и жестко закреплена на столешнице 1. Сменные экраны 6 имеют один типоразмер. Металлические экраны выполнены в виде листов металла с направляющими. Экраны с цепями и брезентом выполнены в виде металлических рамок, в которых закреплены стальные цепи или брезент. На столешнице закреплен удлинитель 11 для подключения к сети переменного тока электрокамина 2 и пылесоса 9. В комплект стенда входит также кронштейн 12 для фиксации шланга 13 пылесоса на одну из стоек 5, служащих для установки сменных экранов. |
Учебно-методический комплекс дисциплины «Безопасность жизнедеятельности.... Учебно-методический комплекс составлен в соответствии с требованиями государственного образовательного стандарта высшего профессионального... |
Учебно-методический комплекс дисциплины «безопасность жизнедеятельности» Учебно-методический комплекс составлен на основании требований государственного образовательного стандарта высшего профессионального... |
||
Учебно-методический комплекс дисциплины «безопасность жизнедеятельности» Учебно-методический комплекс составлен в соответствии с требованиями государственного образовательного стандарта высшего профессионального... |
Учебно-методический комплекс дисциплины «безопасность жизнедеятельности» Умкд «Безопасность жизнедеятельности» часть 1 составлен на основании типовой программы гос впо, гос №215 тех/бак от 23. 03. 2000... |
||
Комплекс (умк) Учебно-методический комплекс дисциплины «Правовые основы гражданской защиты» для студентов специальности 330600 «Защита в чрезвычайных... |
Учебно-методический комплекс дисциплины «Безопасность жизнедеятельности» «Товароведение и экспертиза товаров» (по областям применения) в соответствии с требованиями гос впо по данной специальности и положением... |
||
Учебно-методический комплекс дисциплины опасные биологические и социальные... Учебно-методический комплекс составлен в соответствии с требованиями государственного образовательного стандарта, утвержденного приказом... |
Учебно-методический комплекс дисциплины «Торговое оборудование» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
||
Учебно-методический комплекс дисциплины «организационное поведение» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
Учебно-методический комплекс дисциплины «Русский язык и культура речи» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
||
Учебно-методический комплекс дисциплины «Системное программное обеспечение» Учебно-методический комплекс дисциплины составлен на основании требований государственного образовательного стандарта высшего профессионального... |
Учебно-методический комплекс дисциплины обсужден на заседании кафедры... Учебно-методический комплекс дисциплины составлен на основании требований государственного образовательного стандарта высшего профессионального... |
||
Учебно-методический комплекс дисциплины Учебно-методический комплекс дисциплины составлен на основании государственного образовательного стандарта высшего профессионального... |
Учебно-методический комплекс дисциплины Учебно-методический комплекс дисциплины составлен на основании государственного образовательного стандарта высшего профессионального... |
||
Учебно-методический комплекс дисциплины архитектура ЭВМ 090104. 65... Учебно-методический комплекс дисциплины составлен на основании требований государственного образовательного стандарта высшего профессионального... |
Учебно-методический комплекс дисциплины «Таможенное право» Учебно-методический комплекс дисциплины составлен в соответствии с требованиями государственного образовательного стандарта высшего... |
Поиск |