Скачать 0.65 Mb.
|
1.4 Конструктивное усовершенствование гидросистемы Анализ вероятности безотказной работы, причин отказов и неисправностей элементов гидросистемы, имевших место за рассматриваемый период эксплуатации самолетов Ту-154, позволил выявить конструктивные недостатки некоторых элементов гидросистемы, наметить объекты конструктивных усовершенствований, а также разработать мероприятия, направленные на повышение уровня контролепригодности гидросистемы. Так, для контроля технического состояния узла торцевого распределения жидкости в насосах НП-89Д предлагается оборудовать насосы термоанемометрическими датчиками, позволяющими регистрировать изменение величины утечек. Кроме того, в настоящем проекте предлагается установить термоанемометрические датчики в сливных линиях агрегатов управления и распределения жидкости, что позволит осуществлять:
Термоанемометрические датчики предлагается установить в сливных следующих агрегатов:
Также, предлагается установить Термоанемометрические датчики на каждый из двух гидромоторов привода уборки-выпуска закрылков РП-60. Установка таких датчиков в распределительных узлах гидромоторов позволит судить о техническом состоянии последних. Установка термоанемометрического датчика на кран переключения разворота колес ПОШ позволит контролировать герметичность сопряжения "золотник-гильза" (лист 5 графической части проекта). Негерметичность данной пары (т.е. повышение утечки) может привести к "вялому" развороту колес ПОШ, что недопустимо, а также к снижению эффективности демпфирования колебаний колес передней опоры в режиме самоориентирования. Во избежание попадания загрязненной жидкости в гидросистему через перепускной клапан на корпусах фильтров 11ГФ9СИ и 11ГФ12СИ предлагается установить датчики перепада давления индукционного типа, которые позволят не только сигнализировать о достижении определенного критического перепада давления, при увеличении которого откроется перепускной клапан, но и осуществлять наземный контроль за состоянием фильтроэлементов в процессе технического обслуживания гидросистемы. 1.5 Описание и принцип работы термоанемометрического датчика Термоанемометрический датчик или прибор контроля внутренней негерметичности (ПКВН) служит для контроля расхода жидкости, вытекающей через образовавшиеся зазоры агрегатов в сливные линии функциональных участков гидросистемы. Схема датчика представлена на рис. 1.3. В качестве чувствительных элементов выбраны полупроводниковые микротермосопротивления (термисторы) (2 и 4). Каждый термистор включается в электрическую схему поддержания постоянной температуры, состоящую из моста Уитстона и усилителя с обратной связью. Термистор подогревается проходящим через него током. При появлении в магистрали потока жидкости термистор охлаждается, что приводит к изменению его сопротивления, равновесие моста нарушается и напряжение разбаланса управляет электронным усилителем так, что ток, проходящий через термистор, увеличивается, поддерживая температуру термистора постоянной. Этот ток является одновременно и диагностическим сигналом, который зависит не только от скорости течения жидкости, но и от изменения других параметров потока, обусловленных, в основном, изменением температуры (вязкость, давление, температура, расход). В процессе дросселирования жидкости за счет введения в поток рабочего термистора (2) повышается ее температура и величина сигнала уменьшается из-за снижения теплоотдачи между термистором и потоком жидкости, т.е. возникает температурная погрешность, искажающая величину сигнала. Для компенсации этой погрешности в измерительную схему введен дополнительный компенсационный термистор (4), сигнал которого зависит от параметров жидкости за исключением скорости (расхода). Исключение влияния скорости достигается установкой термистора (4) в замкнутую камеру (3), выполненную в корпусе датчика (5) и соединенную каналом с основным потоком. Путем вычитания сигналов от обоих термисторов можно получить значение их расхождения, зависящее только от скорости (расхода) жидкости. Указанные операции осуществляются в специальном электронном блоке, выполненном отдельно от датчика. Электронный блок прост в эксплуатации, обладает малой массой и может переноситься оператором в любую рабочую зону на самолете. На электронном блоке смонтированы указывающие приборы для оценки расхода жидкости и ее температуры. 1.6 Система управления гидроцилиндром уборки и выпуска шасси В дипломном проекте предлагается система управления гидроцилиндром уборки и выпуска шасси, которая отличается от применяющейся в настоящее время на самолете тем, что на гидроцилиндре уборки и выпуска шасси установлен шариковый клапан переключения, в корпусе, которого имеются два противолежащих седла для шарика с двумя отверстиями в торцах клапана (рис. 1.6). Во время рабочего хода поршня цилиндра жидкость от насоса поступает по трубопроводу (3) в полость корпуса (5), а из него по трубопроводу (6) - в поршневую полость цилиндра (7). Из штоковой полости по трубопроводу (5) рабочая жидкость идет на слив. При холостом ходе поршня жидкость от насоса по трубопроводу (8) поступает в штоковую полость цилиндра (7) и по трубопроводу (9) - во внутреннюю полость корпуса (5), перемещая шариковый клапан влево и преодолевая усилие пружины (1). Дойдя до упора, шарик садится на седло (2), закрывая канал (3). Часть рабочей жидкости по калиброванному отверстию (4) перетекает в трубопровод (3) и идет на слив. При перемещении поршня жидкость из поршневой полости направляется в штоковую полость, суммируясь с жидкостью, поступающей от насоса. Поршень со штоком перемещается быстрее, чем при рабочем ходе. Внедрение данного усовершенствования в системе уборки и выпуска шасси самолета Ту-154 позволяет уменьшить время уборки шасси, что в свою очередь, приводит к более быстрому набору высоты и экономии топлива. 1.7 Гидроаккумулятор Основным назначением гидропневматических аккумулятором является аккумулирование гидравлической энергии в периоды пауз в потреблении ее гидравлическими агрегатами системы. Применение гидропневматических аккумуляторов дает возможность ограничить мощность насосов средней мощностью потребителей гидравлической энергии или же обеспечить в системах с эпизодическим действием потребителей перерывы в работе насосов. С целью повышения эффективности работы гидросистемы в дипломном проекте предлагается гидроаккумулятор, который отличается от существующего тем, что в нем седло установлено по оси штуцера и выполнено с выпуклой опорной поверхностью, плавно соприкасающейся совместно с внешней торцовой поверхностью подпружиненного запорного элемента при закрытом клапане с внутренней поверхностью корпуса. На боковой поверхности подпружиненного запорного элемента выполнены дросселирующие радиальные каналы. Внутренняя поверхность подпружиненного запорного элемента выполнена конической. Стабильность характеристик гидроаккумулятора и повышение эффективности его работы обеспечивается за счет полного слива жидкости, формированием направленной симметричной центральной деформации диафрагмы. Предлагаемый аккумулятор (рис. 1.7) содержит корпус (1), упругую диафрагму (3), гидравлическую (4) и газовую (2) полости, штуцер (13) для подвода жидкости и клапан, выполненный в виде седла (8) и запорного элемента (5) со сквозным осевым каналом (11) и дросселирующими радиальными каналами (12). Запорный элемент (5) связан пружиной (14) перегородкой (6), закрепленной на штуцере (13) гайкой (7). В перегородке (6) выполнен канал (15) для прохода жидкости. Седло (8) установлено соосно штуцеру (13), закреплено на перегородке (6) и имеет выпуклую опорную поверхность (10). Внутренняя поверхность (9) запорного элемента (5) выполнена конической для создания гидродинамической составляющей силы, дополняющей упругую силу пружины (14) и направленной на удержание клапана в открытом положении. Работает гидроаккумулятор следующим образом*, при зарядке газовой полости азотом диафрагма (3) нажимает на запорный элемент (5), который, преодолевая усилие пружины (14), спускается на седло (8), которое перекрывает канал (11) клапана. При полностью закрытом клапане опорная поверхность (10) седла (8) и поверхность запорного элемента (5) клапана плавно сопрягаются с поверхностью корпуса (1), что предохраняет диафрагму (3) от повреждения. При создании гидравлического давления большего, чем давления азота, рабочая идкость перетекает через канал (15) в перегородке (6) и открывает клапан. Жидкость через каналы (11) и (12) устремляется в полость (4), деформирует диафрагму (3). Поскольку проходное сечение канала (11) значительно больше проходного сечения всех каналов (12), основной поток жидкости проходит через осевой канал (11), вызывая направленную центральную симметричную деформацию диафрагмы (3). При расходе жидкости диафрагма (3) под давлением азота вытесняет жидкость, основной поток которой выходит через канал (11). При этом диафрагма (3) распрямляется также симметрично в обратном направлении. Когда диафрагма (3) входит в контакт с клапаном и перекрывает канал (11), незначительное количество оставшейся жидкости выходит через боковые каналы (12) и зазоры в соединения клапана с корпусом (1). 1.7.1 Расчет гидроаккумулятора Рабочие параметры гидроаккумулятора выбираются таким образом, чтобы при минимальном конструктивном его объеме и заданном перепаде (диапазоне) рабочего давления (Рмах - Pmin) была достигнута максимальная полезная емкость аккумулятора. При расчете объемных параметров гидроаккумулятора задаются значения минимального и максимального рабочих давлений, а также полезная емкость аккумулятора. Общий (конструктивный) объем определяется из соотношения: (1.6) Где: vk - общий объем; Vn - полезный объем жидкости, вытесненный из аккумулятора от Рмах до Pmin; И =1 - (изотермическийзакон); Рмах , Pmin - максимальное и минимальное давления, Pmax = (l,25 - l,65) * Pmin = 1,5*16,5 = 25 (МПа); Рн =0,9* Рmin = 0,9*16,5 = 15 (МПа); По статистическим данным: Vn = 0,00035 - 0,0004 м3. (1.7) Объем газовой камеры определяется по формуле: (1.8) Радиус шара равен: Радиус шарового гидроаккумулятора принимаем 0,23 м. 1.7.2 Расчет гидроаккумулятора на прочность При выборе толщины стенки гидроаккумулятора учитываем требования прочности, жесткости и технологичности. За расчетное разрушающее внутреннее давление принимаем РР = f * Pmax (1.9) Где: f - коэффициент безопасности, f=4; РР = 4 * 25 = 100 (МПа). Толщину стенки из условия прочности найдем по формуле: (1.10) Где σ - предел прочности, для стали ЗОХГСА σ =1200 МПа; Толщину стенки гидроаккумулятора принимаем 0,005 м. 1.8 Гаситель пульсаций Гаситель пульсаций предназначен для уменьшения величины пульсаций давления жидкости, возникающих от неравномерной работы гидронасоса НП-89. Как показал анализ данных отказов и неисправностей элементов гидросистемы, гасители пульсаций, устанавливаемые в настоящее время в гидросистеме самолета Ту-154, не в полной мере справляются с возложенными на них обязанностями, т.е. не в состоянии гасить самые опасные частоты пульсаций давления. Поэтому в данном дипломном проекте предлагается гаситель пульсаций новой конструкции, главным достоинством которого является расширение функциональных возможностей его путем регулирования управляющего органа (лист 3 графической части). Предлагаемый гаситель пульсаций состоит из корпуса (1) со штуцерами для подвода и отвода жидкости АМГ-10. В корпусе установлен перфорированный трубопровод (6) и охватывающая его эластичная мембрана (7) с поперечным сечением, уменьшающимся по направлению потока. Конусная вставка (5) охватывает эластичную мембрану и установлена в корпусе с возможностью осевого перемещения. Эластичная мембрана снабжена наружными ребрами, а ее торцы: герметично закреплены в перфорированном трубопроводе. Конусная вставка выполнена с отверстиями для прохода жидкости, которая подается внутрь корпуса через штуцер (11). Между фланцем перфорированного трубопровода и конусной вставкой размещены пружины. Фланец закреплен в корпусе с помощью резьбовой крышки через шарики (4). В конусной вставке и фланце выполнены уплотнительные элементы (12). Гаситель пульсаций работает следующим образом. Жидкость АМГ-10 от плунжерного насоса поступает по штуцеру в перфорированный трубопровод и через его отверстия воздействует на эластичную мембрану (7), на наружную поверхность которой давит жидкость, подводимая через штуцер (11) и поступающая к поверхности мембраны через отверстия в конусной вставке. Жидкость проходит также по каналам, образованным ребрами (10) на наружной поверхности мембраны и внутренней поверхности конусной вставки (5). При гашении пульсаций давления, амплитуда которых не превышает возможностей мембраны по жесткости, конусная вставка отжата пружинами (9) в крайнее нижнее положение и не влияет на жесткость мембраны. При необходимости увеличения жесткости мембраны, например, при переходе на режим работы гидросистемы с большим давлением резьбовую крышку (3) смещают по резьбе влево. Это смещение через шарики передается конусной вставке, которая, смещаясь влево, воздействует через ребра на пружинную поверхность эластичной мембраны, сжимая ее. При этом жесткость демпфирующей системы "мембрана - конусная вставка" увеличивается в желаемых пределах, необходимых для гашения пульсаций данной амплитуды. 1.9 Дозатор Дозатор расположен в гидросистеме аварийного торможения колес шасси, которая используется при отказе основной системы торможения или неэффективной ее работе. Он предназначен для отключения разрушенного участка магистрали, расположенного за ним, чем предотвращается потеря жидкости АМГ-10 и обеспечивается торможение колес с исправной магистралью. Предлагаемое конструктивное усовершенствование дозатора направлено на повышение уровня безопасности полетов за счет повышения надежности работы дозатора путем исключения ложных срабатываний при кратковременных изменениях параметров рабочей среды. Усовершенствованный дозатор (лист 4) состоит из корпуса (5), в котором выполнена полость, сообщающаяся с входным и выходным патрубками, между которыми установлено седло (1). В полости корпуса со стороны входного патрубка размещен перекрывающий седло плунжер (3), нагруженный пружиной (6) в сторону, противоположную от седла. С плунжером жестко соединен поршень (9), расположенный в цилиндре (10), установленном в выходном патрубке. В полости корпуса со стороны входного патрубка установлены взаимодействующие своим днищем с торцом плунжера (3) стакан (7) с проходными отверстиями в стенках и втулка (4), охватывающая стакан (7) и плунжер (3). Стакан (7) нагружен пружиной (6) в сторону плунжера и обращен к нему своим торцом, а втулка (4) закреплена в корпусе (5) и на ней выполнен упор (8), ограничивающий перемещение стакана в сторону седла (1). В торце плунжера (3), взаимодействующего со стаканом (7), выполнены расточки и осевой канал (2), а в поршне (9) выполнены сообщенные дроссельные радиальные отверстия, сообщающие осевой канал (2) с выходным патрубком. Причем, выполнены эти отверстия таким образом, что расстояние от одного отверстия до цилиндра (10) меньше хода плунжера (3), а от другого отверстия - больше. Во втулке (4) также выполнены радиальные каналы» причем, часть из них расположена напротив стакана. Дозатор работает следующим образом. Когда расход АМГ-10 больше расчетного через него расхода срабатывания, усилие от пружины превышает силу, образующуюся от действия перепада давления на плунжере (3), и он находится в открытом положении. При медленном увеличении расхода сверх допустимого увеличивается перепад давления на плунжере (3) и возникающее от него усилие, превышая усилие пружины (12), закрывает плунжер. Гидравлическое сопротивление отверстий и зазора между плунжером (3) и втулкой (4) должны быть рассчитаны так, чтобы давление в канале (2) было незначительно меньше, чем давление во входном патрубке. Это позволит применить пружину с меньшим усилием, чем усилие, образующееся от действия полного перепада давления, а, следовательно, уменьшить массовые характеристики изделия. При закрытом положении плунжера (3) отверстия перекрываются цилиндром (10), а наличие отверстия обеспечивает выравнивание давления во входном и выходном патрубках и, таким образом, автоматический возврат плунжера (3) в исходное положение после устранения причин появления расхода срабатывания дозатора. При быстром изменении параметров, например, мгновенно повышении давления во входном патрубке, давление в канале (2) изменяется с некоторым запаздыванием, определяемым гидравлическим сопротивлением зазора между плунжером (3) и втулкой (4), в то время, как повышение давления во входном патрубке действует на кольцевую поверхность плунжера, ограниченную седлом (1) и втулкой (4), и создает результирующую силу, направленную в сторону открытия отключающегося устройства. Причем, это перепад давления действует временно, до момента уравновешивания давления в канале (2) и входном патрубке» после чего плунжер (3) дозатора извращается в положение, которое он занимал до действия мгновенного повышения расхода АМГ-10. Подвижной стакан (7), нагруженный пружиной (11), служит для компенсации изменений температуры рабочей среды. При обратном ходе жидкости АМГ-10 плунжер (3), перемещаясь, увлекает за собой стакан (7), освобождая тем самым отверстия во втулке (4), и жидкость АМГ-10, проходя через эти отверстия, промывает отверстия плунжера. |
Генеральный план п г. т. Богатые сабы охрана окружающей среды Текстовые материалы Экологические ограничения, использованные при выполнении раздела «охрана окружающей среды» 45 |
Инструкция по технике безопасности при эксплуатации машин очистки корнеплодов (Д2) К работе на машине допускаются лица, прошедшие обучение по программе технического минимума и инструктаж по технике безопасности,... |
||
Охрана окружающей среды с материалами оценки воздействия намечаемой... Выполнен на основании Инструкции о составе, порядке разработки и согласования раздела «Охрана окружающей среды» и градостроительной... |
Отчет о ходе реализации муниципальной программы «охрана окружающей среды» Постановлением мэрии №2782 от 24. 06. 2016 «О внесении изменений в постановление мэрии города от 10. 10. 2012 №5370» внесены изменения... |
||
Инструкция № тбу-07 по технике безопасности для учащихся на занятиях по шахматам К работе в классе шахмат допускаются лица, не имеющие медицинских противопоказаний, прошедшие инструктаж по технике безопасности,ознакомленные... |
Пособие к сниП 11-01-95 по разработке раздела проектной документации "Охрана окружающей среды" Пособие по разработке раздела "Охрана окружающей среды" к "Инструкции о порядке разработки, согласования, утверждения и составе проектной... |
||
Инструкция по охране труда и технике безопасности для лаборанта кабинета... Инструкция по технике безопасности при проведении экскурсии по физике для учащихся |
Инструкция по охране окружающей среды при строительстве скважин на нефть и газ на суше Заместитель Министра министерства охраны окружающей среды и природных ресурсов Российской Федерации |
||
Инструкция по охране труда и технике безопасности на рабочем месте Компетенция Чемпионат WorldSkills может оказаться сложным с точки зрения безопасности в связи с характером квалификации соревнований окружающей... |
Учебный план Учебные предметы Количество часов Всего Основы трудового законодательства, охрана труда, электробезопасность, пожарная безопасность, охрана окружающей среды |
||
1. 1 Подготовка азс к эксплуатации в осенне-зимних и весенне-летних условиях В настоящее время в нашей стране очень актуален вопрос безопасности жизнедеятельности человека, включающий такие разделы как охрана... |
Инструкция по технике безопасности при эксплуатации машин картофелеочистительной К работе на машине допускаются лица, прошедшие обучение по программе технического минимума и инструктаж по технике безопасности,... |
||
Инструкция по технике безопасности при эксплуатации машин картофелеочистительных К работе на машине допускаются лица, прошедшие обучение по программе технического минимума и инструктаж по технике безопасности,... |
Охрана недр и окружающей среды Книга Мероприятия по охране окружающей... Геологическое строение шахтного (карьерного) поля. Геологическое строение поля разреза «Лучегорский- 1» |
||
Инструкция по технике безопасности при работе с тележкой К работе с тележкой допускаются лица, инструктированные по правилам охраны труда и техники безопасности, а также изучившие техническое... |
Закончилась вода в бутыли Не оставляйте аппарат, заполненный водой, при температуре окружающей среды ниже 0 0С. При подготовке аппарата к хранению, а также... |
Поиск |