Скачать 0.69 Mb.
|
Допустимое число опасных ударов молнии на 100 км трассы в год для электрических кабелей связи
3.3.4.2. Защита новых линий, прокладываемых вблизи уже существующих Если проектируемая кабельная линия прокладывается вблизи существующей кабельной магистрали и известно фактическое число повреждений последней за время эксплуатации сроком не менее 10 лет, то при проектировании защиты кабеля от ударов молнии норма на допустимую плотность повреждений должна учитывать отличие фактической и расчетной повреждаемости существующей кабельной линии. В этом случае допустимая плотность n0 повреждений проектируемой кабельной линии находится умножением допустимой плотности из табл. 3.9 на отношение расчетной nр и фактической nф повреждаемостей существующего кабеля от ударов молнии на 100 км трассы в год: n0 = n0 (nр/nф). 3.3.4.3. Защита существующих кабельных линий На существующих кабельных линиях защитные мероприятия осуществляются на тех участках, где произошли повреждения от ударов молнии, причем длина защищаемого участка определяется условиями местности (протяженностью возвышенности или участка с повышенным удельным сопротивлением грунта и т. п.), но принимается не менее 100 м в каждую сторону от места повреждения. В этих случаях предусматривается прокладка грозозащитных тросов в земле. Если повреждается кабельная линия, уже имеющая защиту, то после устранения повреждения производится проверка состояния средств грозозащиты и только после этого принимается решение об оборудовании дополнительной защиты в виде прокладки тросов или замены существующего кабеля на более стойкий к разрядам молнии. Работы по защите должны осуществляться сразу после устранения грозового повреждения. 3.3.5. Защита оптических кабельных линий передачи магистральной и внутризоновых сетей связи 3.3.5.1. Допустимое число опасных ударов молнии в оптические линии магистральной и внутризоновых сетей связи На проектируемых оптических кабельных линиях передачи магистральной и внутризоновых сетей связи защитные мероприятия от повреждений ударами молнии предусматриваются в обязательном порядке на тех участках, где вероятное число опасных ударов молнии (вероятная плотность повреждений) в кабели превышает допустимое число, указанное в табл. 3.10. Таблица 3.10 Допустимое число опасных ударов молнии на 100 км трассы в год для оптических кабелей связи
3.3.5.2. Рекомендуемые категории молниестойкости оптических кабельных линий При проектировании оптических кабельных линий передачи предусматривается использование кабелей, имеющих категорию по молниестойкости не ниже приведенных в табл. 3.11, в зависимости от назначения кабелей и условий прокладки. В этом случае при прокладке кабелей на открытой местности защитные меры могут потребоваться крайне редко, только в районах с высоким удельным сопротивлением грунта и повышенной грозовой деятельностью. Таблица 3.11 Рекомендуемые категории по молниестойкости оптических кабельных линий
3.3.5.3. Защита существующих оптических кабельных линий На существующих оптических кабельных линиях передачи защитные мероприятия осуществляются на тех участках, где произошли повреждения от ударов молнии, причем длина защищаемого участка определяется условиями местности (протяженностью возвышенности или участка с повышенным удельным сопротивлением грунта и т. п.), но должна быть не менее 100 м в каждую сторону от места повреждения. В этих случаях необходимо предусматривать прокладку защитных проводов. Работы по оборудованию защитных мер должны осуществляться сразу после устранения грозового повреждения. 3.3.6. Защита от ударов молнии электрических и оптических кабелей связи, проложенных в населенном пункте При прокладке кабелей в населенном пункте, кроме случая пересечения и сближения с ВЛ напряжением 110 кВ и выше, защита от ударов молнии не предусматривается. 3.3.7. Защита кабелей, проложенных вдоль опушки леса, вблизи отдельно стоящих деревьев, опор, мачт Защита кабелей связи, проложенных вдоль опушки леса, а также вблизи объектов высотой более 6 м (отдельно стоящих деревьев, опор линий связи, линий электропередачи, мачт молниеотводов и т. п.) предусматривается, если расстояние между кабелем и объектом (или его подземной частью) менее расстояний, приведенных в табл. 3.12 для различных значений удельного сопротивления земли. Таблица 3.12 Допустимые расстояния между кабелем и заземляющим контуром (опорой)
4. ЗАЩИТА ОТ ВТОРИЧНЫХ ВОЗДЕЙСТВИЙ МОЛНИИ 4.1. Общие положения В разделе 4 изложены основные принципы защиты от вторичных воздействий молнии электрических и электронных систем с учетом рекомендаций МЭК (стандарт 61312). Эти системы используются во многих отраслях производства, применяющих достаточно сложное и дорогостоящее оборудование. Они более чувствительны к воздействию молнии, чем устройства предыдущих поколений, поэтому необходимо применять специальные меры по их защите от опасных воздействий молнии. 4.2. Зоны защиты от воздействия молнии Пространство, в котором расположены электрические и электронные системы, должно быть разделено на зоны различной степени защиты. Зоны характеризуются существенным изменением электромагнитных параметров на границах. В общем случае, чем выше номер зоны, тем меньше значения параметров электромагнитных полей, токов и напряжений в пространстве зоны. Зона 0 - зона, где каждый объект подвержен прямому удару молнии, и поэтому через него может протекать полный ток молнии. В этой области электромагнитное поле имеет максимальное значение. Зона 0Е - зона, где объекты не подвержены прямому удару молнии, но электромагнитное поле не ослаблено и также имеет максимальное значение. Зона 1 - зона, где объекты не подвержены прямому удару молнии, и ток во всех проводящих элементах внутри зоны меньше, чем в зоне 0Е; в этой зоне электромагнитное поле может быть ослаблено экранированием. Прочие зоны устанавливаются, если требуется дальнейшее уменьшение тока и/или ослабление электромагнитного поля; требования к параметрам зон определяются в соответствии с требованиями к защите различных зон объекта. Общие принципы разделения защищаемого пространства на зоны молниезащиты показаны на рис. 4.1. На границах зон должны осуществляться меры по экранированию и соединению всех пересекающих границу металлических элементов и коммуникаций. Две пространственно разделенные зоны 1 с помощью экранированного соединения могут образовать общую зону (рис. 4.2). Рис. 4.1. Зоны защиты от воздействия молнии: 1 - ЗОНА 0 (внешнее окружение); 2 - ЗОНА 1 (внутренняя электромагнитная обстановка); 3 - ЗОНА 2; 4 - ЗОНА 2 (обстановка внутри шкафа); 5 - ЗОНА 3 Рис. 4.2. Объединение двух зон 4.3. Экранирование Экранирование является основным способом уменьшения электромагнитных помех. Металлическая конструкция строительного сооружения используется или может быть использована в качестве экрана. Подобная экранная структура образуется, например, стальной арматурой крыши, стен, полов здания, а также металлическими деталями крыши, фасадов, стальными каркасами, решетками. Эта экранирующая структура образует электромагнитный экран с отверстиями (за счет окон, дверей, вентиляционных отверстий, шага сетки в арматуре, щелей в металлическом фасаде, отверстий для линий электроснабжения и т. п.). Для уменьшения влияния электромагнитных полей все металлические элементы объекта электрически объединяются и соединяются с системой молниезащиты (рис. 4.3). Если кабели проходят между соседними объектами, заземлители последних соединяются для увеличения числа параллельных проводников и уменьшения, благодаря этому, токов в кабелях. Такому требованию хорошо удовлетворяет система заземления в виде сетки. Для уменьшения индуцированных помех можно использовать: внешнее экранирование; рациональную прокладку кабельных линий; экранирование линий питания и связи. Все эти мероприятия могут быть выполнены одновременно. Если внутри защищаемого пространства имеются экранированные кабели, их экраны соединяются с системой молниезащиты на обоих концах и на границах зон. Кабели, идущие от одного объекта к другому, по всей длине укладываются в металлические трубы, сетчатые короба или железобетонные короба с сетчатой арматурой. Металлические элементы труб, коробов и экраны кабелей соединяются с указанными общими шинами объектов. Можно не использовать металлические коробы или лотки, если экраны кабелей способны выдержать предполагаемый ток молнии. Рис. 4.3. Объединение металлических элементов объекта для уменьшения влияния электромагнитных полей: 1 - сварка на пересечениях проводов; 2 - массивная непрерывная дверная рама; 3 - сварка на каждом стержне 4.4. Соединения Соединения металлических элементов необходимы для уменьшения разности потенциалов между ними внутри защищаемого объекта. Соединения находящихся внутри защищаемого пространства и пересекающих границы зон молниезащиты металлических элементов и систем выполняются на границах зон. Осуществлять соединения следует с помощью специальных проводников или зажимов и, когда это необходимо, с помощью устройств защиты от перенапряжений. 4.4.1. Соединения на границах зон Все входящие снаружи в объект проводники соединяются с системой молниезащиты. Если внешние проводники, силовые кабели или кабели связи входят в объект в различных точках, и поэтому имеется несколько общих шин, последние присоединяются по кратчайшему пути к замкнутому контуру заземления или арматуре конструкции и металлической внешней облицовке (при ее наличии). Если замкнутого контура заземления нет, указанные общие шины присоединяются к отдельным заземляющим электродам и соединяются внешним кольцевым проводником или разорванным кольцом. Если внешние проводники входят в объект над землей, общие шины присоединяются к горизонтальному кольцевому проводнику внутри или снаружи стен. Этот проводник, в свою очередь, соединяется с нижними проводниками и арматурой. Проводники и кабели, входящие в объект на уровне земли, рекомендуется соединять с системой молниезащиты на этом же уровне. Общая шина в точке входа кабелей в здание располагается как можно ближе к заземлителю и арматуре конструкции, с которыми она соединена. Кольцевой проводник соединяется с арматурой или другими экранирующими элементами, такими как металлическая облицовка, через каждые 5 м. Минимальное поперечное сечение медных или стальных оцинкованных электродов - 50 мм2. Общие шины для объектов, имеющих информационные системы, где влияние токов молнии предполагается свести к минимуму, следует изготавливать из металлических пластин с большим числом присоединений к арматуре или другим экранирующим элементам. Для контактных соединений и устройств защиты от перенапряжений, расположенных на границах зон 0 и 1, принимаются параметры токов, указанные в табл. 2.3. При наличии нескольких проводников необходимо учитывать распределение токов по проводникам. Для проводников и кабелей, входящих в объект на уровне земли, оценивается проводимая ими часть тока молнии. Сечения соединительных проводников определяются согласно табл. 4.1 и 4.2. Табл. 4.1 используется, если через проводящий элемент протекает более 25 % тока молнии, а табл. 4.2 - если менее 25 %. Таблица 4.1 |
Пояснительная записка Настоящий проект разработан на основании технического... Рд 34. 21. 122-87 «Инструкция по устройству молниезащиты зданий и сооружений», со 153-34. 21. 122-2003 «Инструкция по устройству... |
Пособие к "инструкции по устройству молниезащиты зданий и сооружений" ... |
||
Инструкция по устройству молниезащиты зданий, сооружений и промышленных... Инструкция предназначена для использования при разработке проектов, строительстве, эксплуатации, а также при реконструкции зданий,... |
Инструкция по устройству молниезащиты зданий и сооружений рд 34. 21. 122-87 Смотри Разъяснение Управления по надзору в электроэнергетике Ростехнадзора о совместном применении "Инструкции по молниезащите зданий... |
||
Инструкция по устройству молниезащиты зданий, сооружений и промышленных... Инструкция предназначена для использования при разработке проектов, строительстве, эксплуатации, а также при реконструкции зданий,... |
Инструкция по устройству молниезащиты зданий и сооружений Разработчик Государственный научно-исследовательский энергетический институт им. Г. М. Кржижановского |
||
Приказ от 30 июня 2003 г. N 280 об утверждении инструкции по устройству... Инструкция предназначена для использования при разработке проектов, строительстве, эксплуатации, а также при реконструкции зданий,... |
Инструкция по устройству молниезащиты зданий и сооружений рд 34. 21. 122-87 Разработчик Государственный научно-исследовательский энергетический институт им. Г. М. Кржижановского |
||
Инструкция по устройству молниезащиты зданий и сооружений рд 34. 21. 122-87 Разработчик Государственный научно-исследовательский энергетический институт им. Г. М. Кржижановского |
Инструкция по устройству молниезащиты зданий и сооружений рд 34. 21. 122-87 Разработчик Государственный научно-исследовательский энергетический институт им. Г. М. Кржижановского |
||
Инструкция по устройству молниезащиты зданий и сооружений рд 34. 21. 122-87 Разработчик Государственный научно-исследовательский энергетический институт им. Г. М. Кржижановского |
"Инструкция по устройству молниезащиты зданий и сооружений. Рд 34.... Области аттестации (проверки знаний) руководителей и специалистов организаций, поднадзорных федеральной службе по экологическому,... |
||
Инструкция по устройству молниезащиты зданий, сооружений и промышленных... Инструкцию разработали: доктор техн наук Э. М. Базелян, Н. С. Берлина, канд техн наук Р. К. Борисов, доктор техн наук Е. С. Колечицкий,... |
Инструкция о порядке осмотров зданий и сооружений Целью осмотров является получение информации о фактическом техническом состоянии зданий и сооружений, их отдельных конструктивных... |
||
3. Основные характеристики зданий и сооружений объекта 4 Перечень зданий (сооружений, помещений), подлежащих капитальному ремонту (реконструкции) 5 |
«Мониторинг зданий и сооружений» Общие правила проведения обследования и мониторинга технического состояния зданий и сооружений |
Поиск |