Скачать 1.86 Mb.
|
Рисунок А1. Области применения методов обработки КВД и типичные формы забойных КВД для радиального фильтрационного потока (РФП). Рисунок А2. Схема снятия КПД-КВД. 1. ТЕОРЕТИЧЕСКИЕ И МЕТОДИЧЕСКИЕ ОСНОВЫ ИССЛЕДОВАНИЯ СКВАЖИН ПО КПД-КВД 1.1. Внедрение горизонтальных скважин, новых технологий разработки сложнопостроенных нефтяных и газовых месторождений, с трудно извлекаемыми запасами, аномальными (неньютоновскими) свойствами нефтей выдвигает научно-техническую проблему дальнейшего развития и совершенствования комплекса взаимосвязанных составляющих элементов гидродинамических исследований скважин и пластов (ГДИС) со сложными траекториями фильтрации. К таким элементам системы ГДИС относятся теоретические основы (рисунок A3), техника и технология проведения (замеры - регистрация с помощью глубинных приборов изменений во времени забойных давлений, дебитов, температур), методы и процедуры обработки и интерпретации данных промыслово-экспериментальных исследований, оценка результатов ГДИС горизонтальных и гидродинамически несовершенных вертикальных скважин. Основные принципиальные отличия ГДИС горизонтальных скважин от вертикальных заключаются в нетрадиционных сложных конфигурациях фильтрационных течений, отличных от плоскорадиальных потоков. Разработанные за последние годы высокоточные глубинные электронные манометры с пьезокварцевыми датчиками давления и глубинные комплексы с сопутствующим компьютерным обеспечением позволяют использовать при анализе данных ГДИС темпы изменения давления, а значит соответствующие процедуры на базе логарифмических производных давления. Это резко улучшает качество интерпретации и увеличивает число определяемых параметров продуктивных пластов. Рисунок A3. Структура системы ГДИС. ИСТОЧНИКИ ИСХОДНОЙ ИНФОРМАЦИИ Рисунок А4. МПФС и решения прямых и обратных задач подземной гидромеханики. 1.2. Основной научной идеей исследования горизонтальных скважин является концепция приближенного моделирования неустановившихся фильтрационных потоков со сложными конфигурациями траекторий течения путем их схематизации во времени и пространстве простейшими одномерными фильтрационными потоками и их комбинациями при решении обратных задач подземной гидромеханики в приложении к ГДИС, а также приближенное математическое моделирование и схематизация сложной картины фильтрации неньютоновских нефтей зонально-неоднородными пластами с подвижными условными границами раздела зон фильтрации нефти с разрушенной и не разрушенной структурой и диагностика параметров этих зон. 1.3. Современные ГДИС рассматриваются как система с неопределенностями, как слабоструктурированная проблема системного анализа. Такой системный подход служит методическим средством изучения проблемы ГДИС и позволяет использовать интегральный эффект системы при создании идеализированных моделей пластовых фильтрационных систем (МПФС), отражающих реальные объекты - продуктивные пласты, в том числе и горизонтальные скважины со сложными траекториями фильтрации. 1.4. МПФС - это мультидисциплинарный синтез прямых и обратных задач подземной гидромеханики, цикла нефтегазопромысловых и других дисциплин, ее трансформации и формализация для предлагаемого выделения новых диагностических (идентификационных) признаков (ДП) разных МПФС (рисунок А4) с тем, чтобы, создав банк-каталог различных прогностических теоретических имитационных МПФС по этим ДП можно было бы с наибольшей вероятностью распознавать, выделять альтернативные варианты МПФС при обработке промысловых данных (в том числе со сложными траекториями для горизонтальных скважин и их простейшими составляющими) и интерпретировать - оценивать их параметры с помощью специально разработанных приемов и процедур экспертных оценок. Сложные пространственные конфигурации траектории фильтрации предлагается приближенно схематизировать простейшими одномерными фильтрационными потоками и их комбинациями, что позволяет обеспечивать, в конечном счете, их приближенное математическое моделирование и изучение методами математической физики. Рисунок А5. Прямая и обратная задачи подземной гидромеханики в приложении к ГДИС. 1.5. К числу простейших одномерных потоков МПФС относятся: линейный (прямолинейно-параллельный) фильтрационный поток - ЛФП, (плоско) радиальный - РФП, (радиально) сферический - СФП и их комбинации - билинейный фильтрационный поток (БЛФП), псевдорадиальный (ПРФП), период влияния ствола скважины (ВСС). Линейное дифференциальное уравнение пьезопроводности для простейших одномерных потоков и их МПФС представляется в виде , (А1) где Р - давление; r - радиальная координата расстояния; t - время; j - коэффициент размерности пространства одного измерения, j = 0; 1; 2 для прямолинейно-параллельного, плоскорадиального и радиально-сферического потоков соответственно; - коэффициент пьезопроводности; - вязкость флюида в пластовых условиях; * - коэффициент упругоемкости пласта. 1.6. Решение прямых и обратных задач подземной гидромеханики и их соотношение в приложении к ГДИС с выделением ДП и методология обработки и интерпретации КПД-КВД анализируются на примере так называемого метода без учета притока (касательной, полулогарифмической анаморфозы, МДН) (рисунок А5). 2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОПРЕДЕЛЕНИЮ СКИН-ФАКТОРА ПО ДАННЫМ КПД-КВД 2.1. Влияние неоднородности пласта на KBД-КПД при плоскорадиальном притоке к скважине, находящейся в центре круговой зоны радиуса rs (с параметрами ks и rs) в бесконечном пласте с проницаемостью k, изучалось В.Н. Щелкачевым (1951 г.), Г.И. Баренблаттом и В.А. Максимовым (1958 г.) и другими исследователями (анализировалось одновременное влияние неоднородности и послеэксплуатационного притока - ВСС). Учет этого вида неоднородности, по существу скин-фактора S, осуществляется через приведенный радиус скважины rcпр в различных формах записи: , (А2) где - скин-фактор, (A3) rс - радиус гидродинамически совершенной скважины; Сдоп - коэффициент дополнительных фильтрационных сопротивлений. Исследования показали возможность определения параметров удаленной зоны пласта по преобразованным графикам КПД-КВД для больших значений времени t. Оценивая rс пр, можно судить о состоянии призабойной зоны пласта (ПЗП). 2.2. Как известно [5, 7, 8, 31, 36, 67 и др.], основная расчетная формула для обработки КПД-КВД по простейшему и широко распространенному традиционному методу без учета притока (т.н. полулогарифмической анаморфозы, касательной, МДН) на базе плоскорадиального притока жидкости к скважине имеет вид: , (А4) откуда с учетом (А2) и (A3): . (А5) Из формулы (А4) следует, что графическое изображение зависимости изменения давления в скважине (КПД-КВД) от логарифма времени (т.н. полулогарифмическая анаморфоза) представляется с некоторого момента времени прямолинейным графиком (схематично представлено на рисунке А1, где по уклону графика i и отрезку А, отсекаемому на оси ординат продолжением прямолинейного участка графика, возможно определение параметров пласта). Простейший традиционный способ оценки параметров пласта по фактическим данным, замеренным КПД-КВД (после пуска скважины с q = const или остановки скважины, долгое время работавшей с q = const и Рс = const), схематически (по рекомендации большинства ранее опубликованных инструкций и методик) заключается в следующем: 1) фактическая КПД-КВД строится в полулогарифмических координатах; 2) по нанесенным точкам на графике выделяется (находится) прямолинейный участок графика (в простейшем случае выделение прямолинейного участка производится "на глаз" - проводится касательная для точек в поздние моменты времени - по последним точкам; по методу наименьших квадратов с последовательным отбрасыванием начальных точек и определением коэффициентов корреляции или с помощью более сложных процедур линейного и нелинейного регрессивного анализа и др.). Этот пункт вызывает неопределенность и ошибки в итоговых результатах. Начальный участок КПД-КВД может искажаться за счет влияния процессов в стволе скважины (ВСС) и скин-фактора. Обычно время конца этого влияния и начала неискаженного плоскорадиального притока (когда справедливо уравнение (А4)) неизвестно. За прямолинейный участок ошибочно может быть принят другой участок с отличными i1 и А1 от действительного и правильного; 3) затем по прямолинейному участку (имеется в виду правильно определенному) находят численные значения его уклона i и А; 4) полагая, что фактическая КПД-КВД соответствует МПФС, описываемой уравнением (А4), принимают: , (А6) ; (А7) 5) из этих соотношений по найденным i, А и известным - замеренным q оценивают гидропроводность: , (А8) и комплексный параметр ; (А9) 6) иногда предлагается последующее расчленение этих комплексных параметров, принимая известными значения вязкости (по данным лабораторных исследований проб жидкости), толщины пласта h (по данным геофизики или расходометрии), пористости m, упругоемкости * и коэффициентов гидродинамического несовершенства скважины, с целью оценки коэффициентов продуктивности (приемистости), пьезопроводности æ и скин-фактора S по формуле (А5) или приведенного радиуса скважины . (А10) Очень часто, если КПД-КВД "короткие", т.е. зарегистрированы в течение короткого промежутка времени, меньшего чем время окончания влияния ствола скважины - ВСС и S, и начала неискаженного плоскорадиального притока, то за действительный прямолинейный участок обычно может быть принят другой ошибочный (например, с уклоном i1 и А1 на рисунке А1). Даже небольшая ошибка в определении уклона i1 приводит к значительным ошибкам в оценке отрезка A1, а их отношение "в степени" входит в выражение (А10). В этих случаях могут получаться малообъяснимые числовые значения rс пр и S. Поэтому, во избежание недоразумений, при интерпретации данных ГДИС величины S и rс пр не вычленяются, а интерпретация оканчивается на оценке комплекса , физический смысл которого достаточно сложно интерпретировать и применять на практике. Гораздо понятнее физический смысл скин-фактора S - он может свидетельствовать о степени снижения (изменения) проницаемости ks в призабойной зоне по сравнению с проницаемостью в удаленной зоне пласта или характеризовать дополнительные фильтрационные сопротивления в пласте. Это может служить основанием для оценки состояния ПЗП и проведения, например, ГТМ по увеличению ks (ГРП, СКО и др.). Вышеизложенный простейший метод был предложен одним из первых и является традиционным и общепринятым. 2.3. Основная трудность, сложность и неопределенность этого способа в изложенном варианте обработки заключается в необходимости предварительной оценки времени tI, начиная с которого нужно выделять прямолинейный участок графика КВД (см. п. 2). Это время tI на замеренных КПД-КВД зависит от ряда факторов, вызванных несоблюдением внутренних граничных условий о мгновенном закрытии или пуске скважины (влияние ствола скважины и др.), которые могут искажать начальные участки КВД, и не учитывающиеся в уравнении (А4). Так, если tI > t, то такие "короткие" КВД нельзя обрабатывать вышеизложенным способом (хотя прямолинейный участок формально может быть выделен согласно п. 2). 2.4. В работах отечественных и зарубежных исследователей метод без учета притока получил дальнейшее развитие с целью устранения этой неопределенности и более обоснованного выбора времени для начала прямолинейного участка КВД в полулогарифмических координатах. Так, Agarval с соавторами (1970 г.) получили аналитическое решение задачи о пуске скважины с учетом скин-фактора S и при q = const в бесконечном пласте в безразмерной форме. В результате анализа, задаваясь значениями безразмерных параметров была рассчитана и построена серия универсальных кривых (type curves) в билогарифмических координатах [lgtD, lgPD(tD, CD)]. Анализ этих универсальных графиков показал: влияние ствола скважины (ВСС) во всех случаях заключалось и проявлялось в том, что начальные участки универсальных графиков в билогарифмических координатах представлялись взаимно параллельными прямолинейными графиками с уклоном, равным единице, т.е. под углом 45° (ДП): i = 1.0 и в этот период с погрешностью до 5% безразмерные параметры PDtD связаны приближенным соотношением: , (А11) где ; ; ; ; (А12) т.е. график функции (6) в координатах [t, Р] обладает теми же ДП, что и для плоскорадиального потока. Рисунок А6. Билогарифмический диагностический график КПД-КВД идентификации режимов течения, типов фильтрационных потоков. Кроме того, для радиального фильтрационного потока, которое приближенно начинает проявляться на универсальном графике в билогарифмических координатах через 1.5 цикла после окончания влияния ВСС, эта зависимость выражается: . (А13) В этих формулах используются общепринятые в теории ГДИС обозначения: PD, tD, CD, rD -безразмерные давление, время, коэффициент учета влияния скважины и радиуса; С - коэффициент влияния ствола скважины; - пористость; Сt - коэффициент общей сжимаемости флюида в стволе скважины; - коэффициент, зависящий от системы единиц измерений. 2.5. Билогарифмический график КПД-КВД обладает идентификационными свойствами (ДП) и называется диагностическим (рисунок А6), так как позволяет распознавать различные типы фильтрационных потоков. На этом графике КВД можно выделить четыре участка: I - начальный прямолинейный с уклоном i = 1.0 (ДП) (под углом 45°) с начала координат до t1 (времени окончания ВСС); II - криволинейный переходный продолжительностью между временами tI и tII, оценивается "эмпирическим правилом" в 1.5 цикла (ДП), полученным из анализа универсального графика; III - средний криволинейный, характеризует РФП, так как здесь справедливо соотношение (А8), а следовательно, и методика обработки КПД-КВД без учета притока в полулогарифмических координатах; оценив время tII (начала РФП) по диагностическому билогарифмическому графику (ДП), можно определять параметры пласта по графику КПД-КВД в полулогарифмических координатах, при этом снимается основная трудность и неопределенность проведения прямолинейного участка графика по методу без учета притока - его надо проводить, начиная с времени tII, найденного по диагностическому графику; IV - конечный участок графика, который зависит и характеризует условия на внешней границе пласта. Время проявления плоскорадиального течения также определяется с помощью графика логарифмической производной забойного давления в билогарифмических координатах для прямолинейного участка с уклоном i = 0. ДП для искомой МПФС среди моделей-кандидатов служит высокая степень совпадения соответствующих графиков. Отмечается, что неопределенность и неоднозначность в выборе МПФС (на базе решения обратной задачи подземной гидромеханики) уменьшается с увеличением числа испытываемых МПФС-кандидатов из обширного банка (каталога) данных интерпретатора. Для выбора и дискриминации МПФС-кандидатов могут использоваться различные методы - корреляционного сжатия, регрессивного анализа, определения доверительных интервалов и т.д. С целью создания теоретических МПФС при приближенном математическом моделировании потоков со сложными траекториями течения и их последующего исследования и анализа путем замены сложных траекторий течения простыми одномерными фильтрационными потоками и их комбинациями, проведен теоретический анализ различных неустановившихся процессов перераспределения давления в одномерных фильтрационных потоках и их некоторых комбинаций для выделения новых идентификационных характеристик и диагностических признаков. |
Методические указания по комплексированию и этапности выполнения... Разработан Федеральным государственным учреждением "Экспертнефтегаз" Министерства энергетики Российской Федерации и Кафедрой "Нефтегазовый... |
Согласовано Генеральный директор ОАО «Саратовнефтегаз» Исследование нефтяных объектов согласно рд 153-39. 0-109-01 (Комплексирование и этапность выполнения геофизических, гидродинамических... |
||
Техническая инструкция по проведению геофизических исследований и... Техническая инструкция по проведению геофизических исследований и работ приборами на кабеле в нефтяных и газовых скважинах |
Техническое задание на поставку геофизической лаборатории с набором... Общие требования: поставка геофизической лаборатории с набором скважинных геофизических приборов для выполнения геофизических исследований... |
||
Правила разработки нефтяных и газонефтяных месторождений Госгортехнадзора и других организаций при проведении работ, связанных с разведкой, подсчетом запасов нефти и газа, проектированием... |
Методические указания по выполнению внеаудиторных самостоятельных... И. В. Федоренко, преподаватель спецдисциплин огбпоу «Томский политехнический техникум» |
||
Методические указания к лабораторным занятиям по дисциплинам «Методика... Методические указания разработаны кандидатом геолого-минералогических наук, доцентом кафедры месторождений полезных ископаемых Н.... |
1. Являются ли обязательными для исполнения "Правила безопасности... Б аттестация руководителей и специалистов организаций, осуществляющих разработку нефтяных и газовых месторождений |
||
Методические указания по выполнению выпускных квалификационных работ... Федеральное государственное бюджетное образовательное учреждение высшего образования |
Методические указания n 2001/109 Методические указания предназначены для врачей и лаборантов спк и лечебно-профилактических учреждений, а также всех специалистов... |
||
Методические указания для выполнения практических работ по общепрофессиональной... Методические указания для выполнения практических работ по общепрофессиональной дисциплине являются частью программы подготовки специалистов... |
Методические указания к выполнению курсового проекта по дисциплине... «Вторичное вскрытие продуктивных пластов» для магистрантов, обучающихся по направлению 21. 04. 01 «Нефтегазовое дело», профиль программы... |
||
О взаимоотношениях заказчика и подрядчика при производстве геофизических Заказчика и Подрядчика при производстве гирс» (далее «Положение») предусмотрены требования по организации выполнения геофизических... |
Методические рекомендации По организации внеаудиторной самостоятельной... «Информатика» разработаны в соответствии с Федеральными государственными образовательными стандартами среднего профессионального... |
||
Методические указания для студентов по выполнению курсовой работы... Методические указания составлены в соответствии с Федеральными государственными требованиями к минимуму содержания и уровню подготовки... |
Методические указания при разработке Настоящие методические указания устанавливают технические нормы носящие рекомендательный характер при разработке газовых и газоконденсатных... |
Поиск |